INFORMATICN TO USERS

This was produced from a copy of a document sent to us for microfilming. While the
most advanced technological means to photograpk and reproduce this document
have been used, the quality is heavily dependent upon the quality of the material
submitted.

The following expl:nation of techniques is provided to help you understand
markings or notations whichk may appear on this reproduction.

1.

The sign or “target” for pagesapparently lacking from the document

photographed is “Missing Page(s)™. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages.
This may have necessitated cutting through an image and duplicating
adiacent pages to assure you of complete continuity.

. When an image on the film is obliterated with a round black mark it is an

indication that the film inspector noticed either blurred copy because of
movemeént during exposure, or duplicate copy. Unless we meant to delete
copyrighted materials that should not have been fiimed, you will find a
good image of the page in the adjacent frame.

. When a map. drawing or chart, etc., is part of the material being photo-

graphed the photographer has followed a definite method in “sectioning”
the material. It is customary to begin filming at the upper left hand corner
of a large sheet and to continue from left to right in equal sections with
small overlaps. If necessary, sectioning is continued again—beginning
below the first row and continuing on until compiete.

. For any illustrations that cannot be reproduced satisfactorily -by

xerography, photographic prints can be purchased at additional cost and
tipped inte your xerographic copy. Requests can be made to our
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases we

have filmed the best available copy.
Universi

300N ZEEB ROAL, ANN ARBOR, MI 48106
18 BEDFORD ROW, LONDON WC1R 4EJ, ENGLAND

7919143
FORGY s, CHARLES LANNY
OK THE EFFICIENT INPLEMENTATION OF PRODUCTION
SYSTEMS.

CABNEGIE-MELLON UNIVERSITY, PH.Das 1979

COPR. 1979 FORGYs CHARLES LANNY
Universi

NS
International

300 N. ZEEB ROAD. ANN ARBOR, M1 48106

© 197

CHARLES LANNY FORGY

ALL RIGHTS RESERVED

PLEASE NOTE:
In all cases this material has been filmed in the best possible

way from the available copy. Probiems encountered with this
document have been identified here with a check mark v~ .

1. Glossy photographs
2. Colored illustrations

. Photographs with dark background

. Print shows through as there is text on both sides of page

-

3

4. IMlustrations are psor copy
5

6

. Indis:igct, broken or small print on several pages - throughout
7. Tightly bound copy with print lost in spine
8. Computer printcut pages with indistinct print

9. Page(s) lacking when material received, and not available

from school or author

10. Page(s) seem tc be missing in numbering only as text
follows

11. Poor carbon copy

12. Not original copy, several pages with blurred type
13. Appendix pages are poor copy

14. Original copy with light type

15. Curling and wrinkled pages

16. OQther

UnR/\leircrsgyﬁlms
International

SCON. ZEE3 RD.. ANN ARBOR. M) 48106 1313} 761-4700

On the Efficient Implementation
of Production Systems
(Thesis Summary)

Charies L. Forgy
30 January 1979

o

Carnegie-Mellon University
Department of Computer Science

Not to be distributed
without permission.

Copyright €} 1979 Charles L. Forgy

This research was sponsored by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 3597, monitored by the Air Force Avionics Laboratory under Contract
F33615-78-C-15E1,

The views and conclusions contained in this document are those of the author and should
not be interpreted as representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the US Government.

Carneqie-Mellon University

MELLON INSTITUTE OF SCIENCE

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF. Doctor of Philosophy

ON THE EFFICIENT IMPLEMENTATION OF PRODUCTION SYSTEMS

TITLE
PRESENTED BY Charles Lannv Forgy
ACCEPTED BY THE DEPARTMENT OF Computer Science

Allen Newell mft/wzﬁ 7 F.0-79

William Wulf \,() A

VLef . 2 Fab e

ATE

AL
/ DEPARTMENT HEAD

APPROYED BY -~

Date

- DeaN

DaTe

Abstract

It is not uncommon for an Artificial Intelligence program to spend most of its time
evaluating patterns in order to locate either subprograms or entries in a data base. This is
particularly true of production systems since, unlike other programs, they have no
alternatives to pattern evaluation. Other prograhs may call some functions by name or
access some data by retrieving the bindings cf variables, but a production system uses
pattern evaluation to select every procedure it executes and to locate every piece of data
operated upon by the procedures. In this thesis, methods are described which can greatly
reduce the amount of time that Artificial Intelligence programs like production systems spend

in pattern evaluation.

The thesis is concerned both with the aigorithms used by a production system interpreter
and with the hardware on which the algorithms are executed. The thesis contains a detailed
description of a method for evaluating a set of patterns which (1) notes the similarities in the
patterns so that it can avoid performing the same test more than once; (2) takes advantage of
the fact that both the set of patterns and the set of objects change slowly by saving
information from one evaluation to the next; and (3) allows a high degree of parallel activity
during the evaluation. This method involves the use of a compiler which translates the
patterns into a prograin for a virtual patter n-matching machine. It is shown in the thesis that,
although the instructions for this machine appear quite different from the instructions for a
conventional processci, they can be interpreted efficiently on a conventional
microprogrammed computer. If a microprogrammed computer were augmented with some
inexpensive hardware described in the thesis, it would be able to interpret the virtual
machine instructions as fast as it interprets conventional instructions. Without the special
hardware, the computer would interpret the virtual machine instructions about three times

more slowly.

This thesis contains an analytical study of the pattern-matching algorithm and an empirical
study cof an interpreter which uses a Lisp implementation of the algorithm. These studies
showed that the time required to evaluate the patterns wouid vary with the logarithm of the
number of patterns. An interpreier running on a microprogrammed,}processor should be
about two orders of magnitude faster than current interpreters; an interpreter running on the
proposed special hardware should be about two and one-half orders of,.' magnitude faster than
current interpreters. The studies showed also that the space requireq‘ to store the ccmpiled
rnatterns would be a linear function of the number of patterns. The c'pmpiled patterns would

be smaller than the uncompiled patterns by. a factor of perhaps two.

|
|
i
1
|

Acknowledgments

I wish to thank
Allen Newell, mv thesis advisor, for supervising my work during the past several years.

Bob Sproull for valuable discussions concerning the research and for serving on the thesis

committee aftor the research was completed.

Sam Fuller and Raj Reddy, the other two members of my thesis committze, for thoughtful

comments onr an aarlier version of this document.

John Laird, Jill Larkin, John McDermott, and Michael Rychener for helping me to make

measurements of their programs.

Diana Connan Forgy for her patience and for helping to produce this document.

Table of Contents

1. Introduction

1.1 The Probiem
1.2 OPS2
1.2.1 Lisp
1.2.2 Match
1.2.3 Conflict Resolution

1
1.2.5 Self Modification

1.2.6 The MKYBAN Production System
1.2.7 Execution of MKYBAN
h
1

.3.1 Other Languages Using Pattern Matching
1.3.2 Relevance of Language Features
1.4 How Big is a Production?
1.5 Solutions to the Probiem
1.6 Overview of the Thesis

2. The Rete Match Algorithm

2.1 Introduction to the Algorithm

2.1.1 Temporal Redundancy

2.1.2 Strucztural Similarity

2.1.3 Compiling the LHSs

2.1.4 Overview of the Rete Match Algorithm

2.1.5 The Kinds of Working Memory Changes Supported
2.2 Non-negated Condition Elements

2.2.1 Productions with one Condition Element

2.2.2 The Data Processed by the Nodes

2.2.3 Processing in the Network for MB11

2.2.4 Productions with Two Condition Elements

2.2.5 Deleting Eiements from Working Memory

2.2.6 How the Two-input Nodes Handle the Tags

2.2.7 The Internal Memories of Two-input Nodes

2.2.8 Variables Occurring in More Than One Condition Element

2.2.9 More Complex Productions

2.2.10 Producing Multiple Output Tokens

2.2.11 Varizbles Occurring Muitiple Times in Cne Condition Element

2.3 Negated Condition Elements
2.3.1 The <NOT> Node
2.3.2 Memories at the <NCT> Node
2.3.3 New INVALID Tokens Arriving on the Right
2.3.4 New VALID Tokens Arriving on the Right
2.3.5 Tokens Arriving From the Left
2.3.6 How the <NOT> Nodes Handle the Tags
2.4 Efficiency Issues
2.4.1 Temporal Redundancy
2.4.2 Structural Similarity
2.4.3 Paralielism
2.5 The Node Programs
2.5.1 The One-input Nodes foi Testing Constant Features
2.5.2 The One-input Node for Testing Variable Bindings

bt

OC0OHWN -

10
11
14
16
16
18
18
ig
21

25

25
25
25
26
27
27
28
28
30
30
32
34
36
37
37
39
40
41
42
42
44
44
a6
a7
48
48
48
49
51
55
55
56

2.5.3 The Ordinary Two-input Node 56

2.5.4 The <NOT> Node : 58
255 The Node That Changes the Conflict Set 59
2.5.6 The Bus Node 60
2.6 The Range of Applicability of the Algorithm 60
3. The OPS2 Interpreter 63
3.1 Reducing the Cost of Storing Tokens 63
3.1.1 Separate Memcry Nodes 63
3.1.2 Memories for <NOT> Nodes 65
3.1.3 The Processing Performed by the Memory Nodes 66
3.1.4 Synchronizing the Divided Two-input Nodes 68
3.2 A Third Action Type 70
3.2.1 A Third Tag 79
3.2.Z2 Inverting Tags at <NOT> Nodes 72
3.2.3 OLD-VALID Tokens and Shkared Memories 72
3.3 The Interpreter’s Data Formats .74
3.3.1 The Token Format 74
3.3.2 The Node Formats -- Preliminaries : 75
3.3.3 The One-inpui Nodes . 76
3.3.4 User Defined Match Predicates 77
3.35 The Memory Node 78
3.3.6 The & TWO Node 78
3.3.7 The Ordinary Two-input Node 79
3.3.8 The &NOT Node 79
3.3.9 The &P Node 80
3.3.10 The &BUS Node 80
3.3.11 An Exampie Network 80 -
3.4 The Interpreter for the Nodes 81
3.4.1 Control in the OPS2 Match 82
3.4.2 The One-~input Nodes 82
3.4.3 The &VIN Node 83
3.4.4 The &MEM Node 83
3.45 The &TWO Node 83
3.4.6 The &VEX Node 84
3.4.7 The &NOT Node 85
3.4.8 The &BUS Node 85
3.4.2 The &P Node 87
3.4.10 Passing Information to the Node Programs 87
4. Analysis cf the OPS2 Algorithm 89
4.1 Best and Worst Case Effects 89
4.1.1 The Worst Case Effect of PM Size on Network Size 89
4.1.2 The Best Case Effect of PM Size on Network Size 90
4.1.3 The Worst Case Effect of Fi4 Size on Token Memory - 92
4.1.4 The Best Case Effect of PM Size on Token Memory 93
4.1.5 The Worst Case Effect of PM Size on Time 93
4.1.6 The Best Case Effect of PM Size on Time 94
4.1.7 The Worst Case Effect of WM Size on Time 96
4.1 8 The Best Case Effect of WM Size on Time 98
4.1.9 The Worst Case Effect of WM Size on Token Memory 9S
4.1.10 The Best Case Effect of WM Size on Token Memory 100

4.2 Expected Effects 101

4.2.1 Characteristics of Large Production Systems 101
4.2.2 The Expected Effect of PM Size on Network Size 104
4.2.3 The Expected Effect of PM Size on Token Memory 104
4.2.4 The Expected Effect of PM Size on Time . 105
4,25 The Expected Effect of WM Size on Time 106
4.2.6 The Expected Effect of WM Size on Token Memory 106

4.3 Summary of Costs 106
4.4 Improving the Performance of the OPS2 Match 107
4.4.1 Binary Search 107
4.4.2 Hashing 109

5. Measurements of the OPSZ Interpreter i1l
5.1 Measures of Time Complexity 111
5.1.1 Measures of Time Compiexity: Detail 111
5.1.2 The Match 112
5.1.3 The Overhead of the Cycle 114
5.1.4 The RHS Actions 114
5.1.5 Automatic Deletions 115
5.1.6 The Complete Time Cost 115
5.1.7 Iniplementation Dependent Time Costs 116

5.2 Measures of Space Compleyxity 117
5.3 The Production Systems 118
5.3.1 Description of the Production Systems ' 118
5.3.2 Characterization of the Production Systems 119
5.3.3 Production System Dependent Time Costs i21
5.3.4 Produclion Sysiem Dependeni Space Costs 122

5.4 Measuring the Effects of PM and WM Sizes _ 123
5.4.1 The Effect of PM Size on Network Size 123
5.4.2 The Effects of PM Size on Token Memory and Time 123
5.4.3 The Cost Formula 125
5.4.4 The Effects of WM Size on Workiing Space and Time 128

5.5 Testing the Assumptions in Chapter 4 129
5.6 Using Hardware Efficiently 131
5.6.1 Paralle! Execution 132
5.6.2 Using Wider Memories 133

5.7 Changes to the OPS2 Algorithm 134
6. A Machine Architecture for Production Systems 135
6.1 Eliminating References to Primary Memory 135
6.1.1 Eliminating References During the Tests - 135
6.1.2 Eliminating References During Indexing 136
6.1.3 Sioring Cells in Contiguous Locations 136
6.1.4 Condition Elements Containing ™" 138
6.1.5 Storing Cells in Dedicated Locatiens 139
6.1.6 Choosing a Tabular Representation 141
6.1.7 Tokens 142
6.1.8 Eliminating References During Node Memory Examination 142

6.2 Other Eificiency Measures 142
6.2.1 Different Memory Technologies 143
6.2.2 Faster Two-input Nodes 143

6.2.3 Faster Tests at Two-input Nodes 144

6.3 Bit Vector Nodes
6.3.1 Fixed Length Successor Fields
6.3.2 Eliminating the Successor Field
6.3.3 Short Successor and Brother Fields
6.3.4 Short Fields for Constants
6.3.5 The Length of the Table for One-input Nodes
6.3.6 The Type Field of the Nodes
6.3.7 Bit Vector One-input Nodes
6.3.8 Bit Vector Indirect Pointer Nodes
6.3.9 Bit Vector Two-input Nodes
6.3.10 Bit Vector Memory Nodes
6.3.11 Bit Vector Production Nodes

6.4 A Machine to Directly Interpret Rete Networks
6.4.1 Comparing One-input Nodes to Conventional Instructions
6.4.2 Special Hardware for the One-input Nodes
6.4.3 Special Hardware for the Two-input Nodes
6.4.4 Special Hardware for the Memory Nodes
6.4.5 Special Hairdware for the &P Nodes
6.4.6 Special Hardware: Conclusion

6.5 Estimating the Performance of a Rete Machine
6.5.1 The Time Required to Execute a One-input Node
6.5.2 Time Costs of the Nodes
6.5.3 KERNL1 on the Rete Machine
6.5.4 A | srger Preduction System
6.5.5 Production Systems on Minicomputers

6.6 Parallelism .

7. Conclusions

7.1 Summary of Previous Choplers

7.2 Futurc Research
1. Comparing Production Systems to Other Programs
I1. Generality of OPS2 Data Elements
III. Assembly Language Version of &ATOM

144
144
145
145
146
147
148
149
149
149
151
151
151
152
152
153

1N
10

154
154
155
155
157
158
159
160
161

163

163
165
167
170
173

1. Introduction

A production system is a programming language with an unfortunate characteristic: larger
produziicn system programs execute more slowly than small cnes. The extra instructions in
the larger program do not have to execute to siow down the system; their mere presence is
sufficient. One can take a working program, add a collection of instructions that will not take
part in the task it performs, and thereby slow down the program. Yet production systems
have another property that makes them particularly attractive for constructing large
programs:' they do not require the programmer to specify in minute detail exactly how the
various parts of the program will interact. There is thus reason to try to reduce the
dependency of execution speed on program size. This thesis reports the results of one study
which tried to reduce the dependency by developing betler algorithms for the production
system interpreter and by develcping hardware on which the algorithms could run efficiently.

1.1 The Problem

A production system interpreter is a computer comprising a processor plus two disjoint
memories called production memory (or PM} and working memory (WM). Production memory
holds the program executed by the processor, and working memory holds the data operated
on by the program. The objects contained in working memory are called data elements. A
data element is 2 symbol structure -- that is, a word in a formal language like the language of
lists (see section 1.2.1) or the language of name-attribute-value triples. If a production
system was interested in Greek tragedy, working memory might contain these data elements:

Agenor is-father-of Cadmus,
Cadmus is-father-of Polydorus,
Polydorus is-father-of Labdacus,
Labdacus is~-father-of Laius,

The objects contained in production memory are condition-action pairs cailed productions.

If there is a man whose father is Laius,
Then assert that the man killed Laius,

The conditions are conditions on the contents of working memory, and the actions are

primarily commands to change the contents of working memory. The two most common kinds
of change are adding ore new data element to working memory and deleting one existing

element.

Unlike a conventional computer program, a production system incorporates nc concept of
sequential flow of control through the program. The flow of control in a production system is
determined by the order in which the condition parts of the productions become true. The

interpreter repeatedly executes the following steps.

1. Determine which productions have true condition parts.

2. If there are no productions with true condition parts, halt the system; otherwise,
select one production from those that do.

3. Perform the actions specified by the chosen production.

4. Go to step 1.

This sequence is called the recognize-act cycle. Step (1) of the cycle is called the match.

Step (2) is called conflict resolution, and step (3) is called act.

The problem considered it this thesis is how to perfoim the match efficiently. Production
systems have historically operated from one to two orders of magnitude slower than
conventional programs, due in large part to the difficulty of performing the match. Moreover,
unless production system interpreters are improved, this performance gap will widen. Since
production systems are being applied to ever more complex tasks, the size of the average
production system is increasing. As is perhaps already obvious, the cost of performing the
match depznds on both the number of productions in production memory and the number of
data elements in working memory. This thesis attempted to develop methods for the match
which wou'd allow even very large production systems to compete in efficiency with

programs written in other languages.

1.2 OPS2

The remainder of this chapter is devoted to background material, inciuding a more detailed
description of the problem and a survey of previous work in the area. This section begins
the background material by describing OPS2, the production system language that will be
used in all the exampies in this thesis. This section describes only those features of the
language which are needed to understand the examples; a complete description is available in
Forgy and McDermott [22]

1.2.1 Lisp

OPS2 is implemented in the language Lisp, and OPS2 production systems make use of Lisp
data types. Thus while one need not know how to program in Lisp to understand an OPS2
production system, one does need to be familiar with Lisp data types. This section provides a

brief introduction to the two most important Lisp data types, lists and atoms. !

There are twd kinds of atoms, numeric atoms and literal atoms. A literal atom is a string of
one or more letiers, digits, and special characters like "7" or "#" (the special characters that
are allowed differ from one Lisp system to the next). The following are legal Lisp atoms.

A

#X
MINKEY
Monkey
-

C12H22011

A numeric atom is an integer or a floating point number.

¢
-1535
2,7183

A list is a sequence of zero or more atoms or other lists enclosed in narentheses.2

Adjacent atoms are separated by spaces, tabs, line feeds, or the like.

A

O

(-1535)

(MONKEY HOLDS BANANAS)

«1) (2 3N

((Want =2) =2 --> (<DELETE> (Want =2)))

lFor descriptions of the other Lisp data types plus an explanation 5f how to program in Lisp, see Weissman [60] or
Siklossy [53).

2This definition does not capture the entire meaning of the term "list”; much more complex siructures can be built.
The simple definition used here is sutfficient to understand OPS2.

The concept of equality of objects is very important in OPS2; hence it is necessary to
consider what it means for two Lisp objects to be equal.1 Equality of literal atoms is simpie to
define; two literal atoms are equal only if they comprise identical strings of characters. Thus
AB is equal to AB, but not to BA, AAB, or ABB. The atom MONKEY is not equal to Monkey. Two
numeric atoms are equal if their algebraic difference is zero. When an integer is compared to
a floating point number, the integer is converted to floaling point. Thus 3 is equal to 3,0 but
not to 8,01. Two lists are equal if their corresponding parts are equal; it is necessary that
they have the same number of parts and that the parts be disposed igentically. The list
(AB1) is equal to (AR 1) and (A B 1,0), but not to (A1B), (AB1 1), or
((A B 1)). Atoms are not broken into their constituent characters, so (A B 1) is not equal
to (AB 1) or (AB1).

1.2.2 Match

A production is a list containing a right pointing arrow (the atom ==>). The condition part
of a production is the part before the arrow; it is called the LHS (left hand side) of the
production. Both working memory and the LHSs of the productions contain lists. The lists in
the productions, which are called condition elements, are patterns. The match tries io find
instances of the class defined by the pattern among the lists in working memory -- a process
called instantiating the pattern. A production is ready to be executed when all its cendition
elements are instantiated, (An exception to this is explained below in the paragraph about

the special symbol "-".) The ordered pair of a production name and the collection of data
eiements that instantiate the production’s condition elements is cailed an instantiation. The
responsibility of the match is to find the set of all legal instantiations (the conflict set).

A condition element can contain variables and functions to be executed during the match.
A condition element can be instantiated by a working memory element if the two can be made
equal by substituting appropriate quantities for the variables and functions. This section

describes the variables and functions that can appear in condition elements.

The simplest condition element is a constant or a list of constants:

Stop
{Monkey On Ladder)
(Want (Monkey On Ladder))

The match is allowed to make no substitutions for a constant; a data element can instantiate a

LEor those famitiar with Lisp, the definition of equality used here is that used by the predicate EQUAL.

constant condition element only if the two elements are equal.

Somewhat less simple are the condition elements containing variables. A variable in an
OPS2 production system is a literal atom beginning with =, #, <, or >,

=W
=P
P

Variables beginning with = are the most important; these are the ordinary variables found in
most pattern matching systems. The match is aliowed to substitute any data subelement for
such a variable. The variable is said to be bound to the data element that substitutes for it.
If a variable occurs more than once in a LHS, all occurrences must be bouincd to the same
subelement. A typical use of variablec is seen in production mB10.1

MB10O ((Hant =2) =2 --> (<DELETE> (Want =2)))

This production has two condition elements, (Hant =2) and =2. If working memory held only

the following three elements

(Want (Monkey Holds Bananas))
(Want (Monkey Near (8 2)))
(Monkey Near (8 2))

then MB10 would have one instantiation:

<inB10, (Want (Monkey Near (8 2))) (Monkey Near (8 2))>,

(Recall that an insiantiation is defined to be an ¢rdered pair of a production name and the
data elements that instaniiaie the production’s condition elements.) The list
(Monkey Near (8 2)) is bound to both occurrences of =2.

As variables beginning with = indicate that two elements must be equal, variables beginning
with # indicate that two elements must be unequal. A variable beginning with # may occur in
a LHS only if the LHS contains another variable beginning with =, but otherwise spelled
identically. The variable #P can occur in MBS, for example, only because =P occurs there

also.

lThe oroductions and moct of the condition elemants zhown in this section are taken from the MKYBAN production
system, which wili be described in gection 1.26.

MBS ((Want (=0 Near =P)) (Light =0) (=0 Near #P)
-

(Want (Monkey Holds =0)))

The variables beginning with # can be substituted for by any data subelement, but the

subelement must not be equal to the subelement bound to the = variable.

Variables beginning with < and > are are used much like those beginning with #. These
also are allowed only if elsewhere in the LHS there is a variable beginning with = but
otherwise spelled identically. The variables beginning with < can be substituted for by
numeric atoms smaller than those bound to the = variable; the variables beginning with > can

be substituted for by numeric 2toms greater than those bound to the = variable.

One variable, = by itself, has been defined to be a "don’t care". The variable = can be
substituted for by any data subelement, and there is no requirement that multiple
occurrences must be substituted for by the same subelement. Thus the condition element

(: - :)
would match any data element with three subelements, ir-1uding both of the following.

(111)
(ABO)

Ordinarily a condition element can be instantiatea only by 2 data element having the same
number of subelements. Two special symbols are provided in OPS2 to relax this restriction.
The symbol ! allows substituting an arbitrarily long tai! of 2 list for a single condition

subelement. The condition element

(Al =)

could, for example, be instantiated by any of the following.

a1
(A1 2D
A (A))

Since the tail can have length zero, the condition element could also be instantiated by a list

containing only one element.

W

The other special character is & It is used to group together twe condition elements so that
they can be substituted for by a single data element. This character is used in the last

condition element of MB12.

MB12 ((Want (Monkey Near =P)) (Monkey On Floor)
(Monkey Near =C & #P)
-—>
{<WRiTE> "The monkey walks from™ =C "to" =P)
(<DELETE> (Mant (Monkey Near =P)))
(<DELETE> (Monkey Near =C)) .
(Monkey Near =P)) ’

Since the & groups together =C and #P, this condition element can be instantiated only by

data elements with three subelements.

OPS?2 provides the user a limited facility for defining his own tests. The user writes a Lisp
program to test data subelements and declares to the interpreter that it is for use in the
match. After that, when the interpreter tries to instantiate a condition element containing the
function name, it will apply the function to the data subelements that substitute for the
functior, name. Only those substitutions for which the functic returns TRUE will be allowed.
The following ~ondition element, for example, contains an occurrence of the function

<NOTANY>.
(Monkey On =0 & (<NOTANY> Floor))

As this shows, arguments to the function may be included in the LHS. The <NCTANY> function
disallows constants that are equal to its argument. In this case its argument is Floor, so the

condition element can be instantiated by

(Monkey On Couch)
or
(Monkey On Ladder)

but not

(Monkey On Floor),

The special symbol - allows the user to specify that a condition element must not be
instantiated. A LHS is satisfied when all of the condition elements not preceded by = are

instantiated and none of the condition elements preceded by = are instantiated. The bindings
to variables are considered in determining whether the condition elements are instantiated.

Since the second condition element of MB19 is negated,

MB19 ((Want (EmptyHanded =X)) = (=X Holds =)
-

(<DELETE> (Want (EmptyHanded =X))))

if working memory held only the following ihree elements

(Want (EmptyHanded Monkey1))
(Want (EmptyHanded Monkey2))
(Monkeyl Holds Ladder)

then MB19 would have one instantiation:

<MB19, (Want (EmptyHanded Monkey2))>,

1.2.3 Conflict Resolution

Conflict resolution performs two functions. First it determines whether execution of the
production system should halt, and then if not, it chooses the one instantiation to be executed
in act. It performs these functions by applying in order up to seven rules called conflict

resciution rules. The rules are

1. Hall the system if the conflict set is empty.

2. Exclude from consideration all instantiations that have previously executed. If
none are left after this step, halt the system.

3. Order the insiantiations based on the recency of the data elements they contain
and then exclude from consideration all instantiations except the ones dominating
under this order. In performing this comparison, the interpreter considers all the
data elements of the instantiations. To order two instantiations it first compares
their most recent elements. If one is more recent than the other, the
instantiation containing the more recent element dominates. If both elements are
equally recent, the interpreter compares the second most recent elements of
both instantiations. If they are equaily recent, it compares the third most recent
elements, and so on. If the data elements of one instantiation are exhausted, the
instantiation not exhausted dominates. Only if the two instantiations are
exhalsted simultaneous!, does this rule consider them equal.

4. If more than one instantiation remains after applying the third rule, eliminate all
the instantistions whose productions have fewer condition elements than others
in the remaining set.

5. If more than one instantiation remains after applying the fourth rule, eliminate all
the instantiations whose productions have fewer constant atoms in their LHSs
than others in the remaining set.

6. If more than one instantiation remains after applying the fifth rule, eliminate all
the instantiations except these of the most recently created production in the
remaining set.

7. If more than one instantiation remains after applying the sixth rul~, iale an
arbitrary selection of the instantiation to execute.

For a justification of this rule set, see McDermott and Forgy [34]

1.2.4 Act

The part of an OPS2 production following the arrow is called the RHS (right hand side). An
RHS contains zero or more lists called actions. In the act part of the recognize-act cycle, one

production is executed by performing all its actions.

The simplest action is a list of constant atoms.

(Want (EmptyHanded Monkey))

Actions of this kind are executed by copying the list and then adding the resuiting list to
working memory.

The next step in complexity is an action containing variables that were bound during the

match.

(Want (Ladder Near =P))

(=2 Near =P)
Actions of this kind are executed by copying the list, replacing the variables by the values to
which they were bound, and then adding the resulting list to working memory. Executing the
first action above, for example, might result in adding to working memory the list

(Want (Ladder Near (8 2))).

The final step in complexity are the actions containing RHS functions. An RHS function is a
Lisp function that is called when the action containing it is executed. Some of the RHS
functions are like variables in that they affect the copying of the iist. One very common
function of this class is the action <READ>, which accepts input from ihe user -nd inserts it

10

into the list in the place of the function. For example, if the action

(INPUT (<READ>))

were executed, and if the user typed in

HALT

working memory would have added to it the data element

C(INPUT HALT),

Another kind of RHS action is executed not to affect the copying of a list, but to realize some
side effect. Perhaps the most important function in this ciass is <DELETE>. This function
accepts one or more arguments which it copies in the usual fashion, replacing variables and
executing RHS functions. After the lists are copied, it searches working memory to determine
if identical elements are contained there; if it finds any, it removes them from the memory.

(<DELETE> (HWant =2))
(<DELETE> (Want (Monkey Near =P)))

The action <WRITE> is also executed only for its side effects. This function copies its
arguments like <BELETE> and then prints them on the user’s terminal.

1.2.5 Self Modification

Two RHS functions are provided to allow production systems to modify themselves while
they are running. The action <BUILD> evaluates its argument in the usual way and then adds
the result to production memory. The argument must, of course, evaluate to a legal
production. The following production, for example, would pick up productions that had been
assembled in working memory and add them to production memory.

PBUILD ((Production =P) --> (<BUILD> =P))

The <BUILD> action accepts an optional name for the production. If no name is provided,
<BUILD> creates one. In either case, <BUILD> returns the name of the new production. The
action <EXCISE> is the inverse of <BUILD>. Its argument should evaluate to the name of a

production. That production is removed from production memory.

11

1.2.6 The MKYBAN Production System

This section contains the source listing of a production system named MKYBAN, which
solves the venerable monkey and bananas problem. This production system gives a monkey
the =zbilities to move around a room, to climb onto and off of objects, to grasp and release
objects, and to carry light objects as it moves. Goals can be set for the monkey, and the
production system will try to satisfy the goals using the abilities of the monkey. Three
problems that the system can solve are listed aiter the production system. The three
problems are all variants of the task of getting bunch of bananas that are too high for the

monkey to reach.

Before showing the production system, the coding conventions used in the system should
be described. Working memory in the system contains only two kinds of elements. Most of

the elements are assertions about the current status of the system.

(Monkey On Ccuch)
(Monkey Holds Ladder)
(Bananas Near (8 2))

The rest of the data elements are descriptions of states that the system is trying to achieve.

(Want (Monkey Holds Bananas))
(Want (Monkey On Ladder))

The productions® LHSs are ali similar. Each LHS begins with a condition element to match one
of these "wanis". The rest of the cendition elemenis pick up the data needed by the RHS

actions.

The following is a listing of MKYBAN as it weuld be read into the OPS2 interprzter. Lines

[SYSTEM
~ row lo get objects that are too high to reach

MB1 ((\Want (Monkey Hoids =W)) (High *W) (=W Near «P)
-

(Want (Ladder Near =P)))

MB2 ((Want (Monkey Holds «W)) (High =W) (=W Near «P)
(Ladder Near «P)
-—->
(Want (Monkey On Ladiar)))

MB3 ((Want (Monkey Holds «W)) (High W) («W Near «P)
(Ladder Near =P) (Monkey On Ladder)
——>

(Want (EmptyHanded Monkey)))

MB2 { {Want (Monkey Holds «W)} {High *W) (sW Near «P)
(Ladder Near =P) (Monkey On Ladder) - (Holds Monkey)
-—>
(<WRITE> "The monkey grabs the" =W)
(Monkey Holds =W) (<DELETE> (Want (Monkey Holds «W))))

-~ How to get objects that are low enough to reach

MBS ((Want (Morkoy Rolds «W)) - (High «W) («W Near «P)
-—>
(Want (Monkey Near «P)) }

MB6 ((Want (Monkey Holds »W)) - (High «W) (=W Near =P)
(Monkey Near =P)
>

(Want {(EmptyHanded Monkey)))

MB?7 { {(Want (Monkey Holds «W)) ~ (High =W) (sW Near =P)
(Monkey Near «P) - (Holds Monkey =)
-—>
(<WRITE> "The monkey grabs the" »W)
(Monkev Holds «W) (<DELETE> (Want (Monkey Holds =W))))

~ How to move light objects from place to place

MBS8 ((Want (<O Near =P)) (Licht «0) (=0 Near =P)
-—>

(Want (Monkey Holds =0)))

MBS ((Want (=O Near =P)) (Light =0) (=O Near #P)
(Monkey Holds «0)
—>

(Want (Monkey Near =P)))
MBI10 { (Want «Z) «Z --> (<DELETE> (W3ant 22)))

~ Ho'w the monkey moves from place io piace

MB11 ((Wani (Monkey Near =P))
-—>

{Want (Monkey On Floor)))

MB12 ({(Want (Monkey Near «P)) (Monkey On Floor)
(Monkey Near «C & «P)
>
(<WRITE> "The monkey walks from™ =C "{o" «P)
{<DELETE> (Want (Monkey Near «P)))
(<DELETE> (Monkey Near =C))
{Monkey Near =P))

MB13 ((Want (Monkey Near «P)) (Monkey On Ficor)
{Monkey Near «C & =P) (Monkey Holds =2)
-—>
(<WRITE> "The monkey walks from"” «C "to" «F)
(<DELETE> (Want (Monkey Near «P)) }
(<DELETE> (Monkey Near «C) («Z NEAR =C))
(Monkey Near =P) (=Z Near =P))

~ How to climb on and off objects

MB14 ((Want (Monkey On Floor))
(Monkey On =0 & {<NOTANY> Floor))
->
(<WRITE> "The monkey jumps off of the” «0)
(<DELETE> (Want (Monkey On Floor)))
(<DELETE> (Monkey On =0))
(Monkey On Floor))

MB1S ((Want (Monkey On =0)) («O Near «X)
-—>

(Want (Monkey Near =X)})
MB16 ((Want (Monkey On «0)) (=0 Near «X) (Monkey Near «X)

-—>

(Want (EmptyHanded Morkey)))

MB17 ((Want (Monkey On «0)) (=0 Near =X) (Mankey Near =X)
- (Monkey Holds «) (Monkay On =Z2)
-—>
(<WRITE> "The monkey climbs onto the" =0)
(<DELETE> (Want (Monkey On =0)))
(<DELETE> (Monkey On «2))
(Monkey On =0))

~ How the monkey empties his hands

MB18 ((Want (EmptyHanded Monkey)) (Monkey Holds «X)
-—>
(<WRITE> "The monkey drops the" =X)
(<DELETE> (Want (EmptyHanded Monkey)))
(<DELETE> (Monkey Holds =X)))

~ To recognize when the monkey is already EmptyHanded

MB19 ((Want (EmptyHanded «X)) - (=X Holds «}
-—>

{<DELETE> (Want (EmptyHanded «X)7))

~ T1, 12, and 13, defined below, are sample prcblem statements

[DV T1 ((Want (Monkey Holds Bananas))

(Monkey Near (5 7))

(Monkey On Couch)

(Couch Noar (5 7))

(Bananas Near (8 2))

{High Bananas)

(Light Ladder)

(Ladder Near (2 2))

]

[DV T2 ((Want (Monkey Holds Bananzs))

(Monkey Near (2 2))

(Monkey On Floor)

(Couch Near (5 7))

(Bananas Near (8 2))

(High Bananas)

(Light Ladder)

(Ladder Near (2 2))

13

14

[DV T3 {{Wanl (Monkey Holdz Bananas))

(Monkey Near (5 7))

(Monkey On Couch)

(Couch Near (S 7))

(Bananas Near (8 2))

(High Bananas)

(Light Ladder)

(Ladder Near (8 2))

1.2.7 Execution of MKYBAN

The following is a trace of the MKYBAN production systera sviving one of the problems
defined in the source file. Commentary on the trace is in italics.

>

The interpreter prompts with >. Everything shown here is output frem the compuier except

the underlined command below to start processing problem T3.
>(START T3

The elements describing problem T3 are forced into working memory, causing MKYBAN to
begin processing. Each time a production fires, the interpreter prints the deta imege of the

nroduction (i.e., the data to which the LHS and RHS are instantiated).

MB2
(Want (Monkey Holds Bananas))(High Bananas)(Bananas Near (& 2}}
(Ladder Near (8 2))
-
(Want (Monkey On Ladder))

It is possible to infer the generol structure of a production from the trace information. Theo

production. that just fired, for example, cs

MB2 ((Want (Monkey Holds =W)) (High =W) (=W Near =P)
(Ladder Near =P)

-

(Want (Monkey On Ladder)))

15

MB1S
(Want (Monkey On Ladder))(Ladder near (8 2))
->
(Want (Monkey Near (8 2)))

MB11
(Want (Monkey Near (8 2)))

-
(Want (Monkey On Floor))

The trace of MB14 shows two new kinds of information. Before the name of the produciion is
what was printed by a <WRITE> action. After the element that was added to working memory

are the two elements that were deleted.

The monkey jumps off of the Couch

MB14
(Want (Monkey On Floor))(Monkey On Couch)
-
(Monkey On Floor)
Deleted:

(Want (Monkey On Fioor))(Monkey On Couch)

The monkey walks from (5 7) to (8 2)

MB12
(Want (Monkey Near (8 2)))(Monkey On Floor)(Monkey Near (5 7))
-
(Monkey Near (8 2))
Peleted:

(Want (Monkey Near (8 2)))(Monkey Near (5 7))

The monkey c¢climbs onto the Ladder
MB17
(Want (Monkey On Ladder)){Ladder Near (8 2))(Monkey Near (8 2))
(Monkey On Floor)
-
(Monkey On Ladder)
Deleted:
(Want (Monkey On Ladder))(Monkey On Floor)

16

The monkey grabs the Bananas
MB4
(Hant (Monkey Holds Bananas))(High Bananas)(Bananas Near (8 2))

(Ladder Near (8 2))(Monkey On Ladder)
-
(Monkey Holds Bananas)
Delcted:
(Want (Monkey Holds Bananas))

With the execution of MB4, the solution of the problem is complete. Since nro other

productions have satisfied LHSs, the system halts.

END -- NO PROBUCTION TRUE

1.3 The Scope of the Problem

While the discussion in this thesis must be restricted to a single production system
languagze if it is to be kept short and focused, a potential problem arises from so doing. The
reader might receive the impression that this thesis is concerned just with the design of an
interpreter for OPS2. Quite the contrary is true, however. The goal of the research
described here has been to develop technigques that can be applied to all the production
systems in the class described in section 1.1. And there is reason to believe that the
techniques can easily be adapted to languages outside this class. Chapter 2, which introduces
the pattern-matching algcrithms, ends with an argument that the 2!gorithms would be widely
applicable. This section surveys the languages that use pattern matching.

1.3.1 Other Languages Using Pattern Matching

The survey of languages in this section is rather brief. For other surveys and general
discussions of production systems, see Newell [37, 39], Davis and King [14], Waterman and
Hayes-Rath [59], and Hayes-Roth, Waterman, and Lenat [25] For a survey of the other
Artificial Intelligence programming languages, see Bobrow and Raphael [8].

Production systems like OPS2 are often called "pure" production systems, presumably
because they cdntain fewer and more general language constructs than the other production
systems. Other languages in thic class include PSG [38], one of the earliest production
system languages; PSNLST [48], a language intended for general Artificial Intelligence
applications; HSP [31], a ianguage in which a large part of a speech recognition program was
coded; ACT [2], a ianguage for simulating human cognition; EPS [11], a language much like

17

PSG; PAS-II [58], another PSG-like language; OPS [21], OPS2’s predecessor; and Vere’s
Relational Production System [57], a language with a more carefully formulated semantics

than the others listed here.

Another important class of production systems is the class of deductive or
consequent-driven systems. The interpreters for these systems include automatic deduction

mechanisms. A production like

ABC-->DE

(A, B, C, D, and E are fcrms containing constants, variables, etc.) in a pure production system
means, "If A, B, and C are instantiated, then instantiate D and E and add them to working
memory.” In a deductive production system, a production like this means, "To show either D
or E to be true, try to show A, B, and C to be true.” If the interpreter was asked to show
some statement X to be true, it would first try to find a matching statement in working
memory. The presence of the working memory element would indicate that X was true. If
the interpreter could not find such an eiement, it would locate a production whose RHS
contained a pattern that could be instantiated to X, and then recursively call itself to show all
the statements in the production’s LHS o be true. Deductive production systems also allow
the productions to be executed in the style of pure productions (left to right), though
generally a given production cannot be used in both a deductive and a pure style. Perhaps
the two best known deductive oroduction systems are Emycin, which has been used for the
Mycin [52, 12] and Tieresias [13] systems, and Rita [3, 4], the Rand intelligent terminai agewni.
Most Emycin productions are executed in the deductive mode; most Rita productions most are

executed in the pure mode.

Some production systems have been created just for incorporation into a particular
program and have consequently never been méde available outside the program. The
programs incorporating such production subsystems include Dendral [19], a program for
interpreting the daia from a inass speciromeier; hearsay-11 {17, 30], a speech recognition

system; and AM [29], a program to perform scientific discovery.

Finally, production systems are not unique in using pattern matching to invoke processing.
Many of the new Artificial Intelligence languages aillow pattern directed invocation of
procedures, though in these systems it is not the only way to call a procedure. These
languages include Micro-Planner [55, 5], Conniver [32], QA4 [45], Qlisp [50, 42), Piasma {26,
27], and KRL [9, 10].

18

1.3.2 Relevance of Language Features

A diversity of features exists among the languages listed in the last subsection. Even in
the single class of pure production systems, there are different sets of conflict resolution
rules, different match and action primitives (though here the differences are generally not
great), and three different data element formats. The three data formais are
name-attribute-value tripies (see Rita), a kind of colored directed graph called a semantic net
(ACT), and either OPS2-style lists or a subset of these lists.

Only two of the differences, the data eiement format and the match primitives, are relevant
to the discussion in this thesis. Since the methods described here are concerned with the
match, whether the methods could be used for a given language cannot depend cn the
primitive action types of the language, on the conflict resclution rules used, or on any other
feature provided by the language (e.g., the automatic search mechanisms of the deductive
production systems). At the end of Chapter 2 there is an argument that the methods
described there can be used for most data element formats and for many kinds of match

primitives.

1.4 How Big is a Production?

Since this thesis is concerned with the performance of production sysiem interpreters,
there are many places in the thesis where it is necessary to discuss the size of a production
system or the rate of execution of a production system. The metrics that will be used in
these discussions are: for production system size, the number of productions in production
memory and the number of data elements in working memory; for the rate of execution, the
number of RHS actions performed each second. These metrics are obviously crude, but so
are the metrics whicih are cdmmonly used for conventiona! programming lanzuages. 70
measure the size of an Algol program, for example, one often simply counts the lines of code.
Any such metric ic meaningful only if the person reading the numbers is familiar with the
metric. This section provides an introduction to the production system metrics for those

readers who may be unfamiliar with them.

The first metric, the number of elements in working memory, can be related directly to Lisp
since OPS2 data eiements are lists. To have, for example, 300 data elements with an average

of 6 list cells per element, is to have 1800 list cells cf data.

Thz other two metrics can also be reiated io conventional programming languages, though
witt. mooe difficulty. In the past few years, several programs which were originally writien in
tisp ont other ccnventional programming languages have been recoded as production

19

systems. By comparing the original and production system versions of the programs, it is
possible to derive estimates for the amount of processing represented by one RHS action and
for the number of lines of code required to equal one production. Appendix I contains the
details of comparisons of five programs. In those comparisons, when it was necessary to
convert a range into a single number, the number that was least favorable to the production
system was chosen. To summarize the results, a praduction is the equivalent of at least 7
lines of Lisp, and a production system would have to execute about 1000 actions per second
to equal the performance of Lic» on a PDP-10, model KL. (A PDP-10, model KL is a medium
scaie computer, capable of performing more than a million instructions per second when

running Lisp.)

1.5 Solutions to the Problem

This section surveys the existing strategies for improving the efficiency of the match.

Most of the strategies involve some kind of indexing scheme. In general, an index is a
function from members of one set to members of another set. In Fortran, for example, one

can write the expression

xX(3)

which will cause the computer to index from the integer 3 to the floating point number stored
in the third element of the vector X. Many indexing schemes involve successive applications
of more than index function. In a language that allowed vectors to be stored as eiements of

other veciors, for example, one could write

xX(3 ()

which would cause one level of indexing from 3 to a vector, and then another level from 4 to
the element stored in the fourth position of that vector. In contrast to these two examples,
the index functions used by production system interpreters do not restrict their index sets to
integers. The indexing performed in production system interpreters maps from a symbolic
expression (typically a list) to elements of some set. The interpreter generally extracts some
feature of the expression (perhaps taking the first atom from the list) and then retrieves a

precomputed association from that feature to the set.

One of the simpiesi exampies of indexing is found in PSNLST [48]. When an element enters
PSNLST's working memory, one feature of the data element is used to associate io aill the
productions that might match that element. With each production the interpreter keeps a list
of the data elements that have associated to it. By comparing the lists the interpreter

20

deter:mines which productions are most likely to have instantiations, and it tries to instantiate
those productions first. Due to the conflict resolution rules of PSNLST, the match can
terminate after the first instantiated production is found. Despite the simplicity of the
indexing, PSNLST has one of the faster production system interpreters -- in large part
because the language was so defined that this indexing scheme would be highly

ciscriminating.

McDermott, Newell, and Moore [33] investigated several indexing schemes. One was a
single level scheme similar to that in PSNLST. Two were two-level schemes in which the
second level of indexing used a highly discriminating, but computationally expensive
combination of features. A fourth scheme they tried was quite different from the others. It
used a discrimination net, which on each eycle indexed from the entire contents of working
memory to the entire set of productions that might be instantiated. The interpreter usi. .z this

scheme was less efficient than the other three.

Rieger [44] is investigating a scheme that uses multiple levels of indexing; the number of
levels used for each condition element depends on the number of features occurring the
element. This system attempts to get further efficiency by partitioning working memory. The
user is required to divide working memory into "channels” and to declare which channel each

conditior eiement is sensitive to.

Rhyne [43] has proposed an extension the concept of indexing: constructing associations
from the actions in the productions’ RHSs to the condition elements that might match the data
elements added or deieted by the actions. When an element entered or left working memory,
the interpreter would retrieve the association stored with the responsible action, rather than
compute the index from the element. The scheme seems never to have been implemented,
and from its description it appears that it would provide a useful amount of discrimination
only if the action elemerts were composed predominantly of constants.

McCracken [31] has described an interpreter which indexes working memory as well as
procduction memory. Ordinarily, when indexing of productions is used, all the condition
elements are indexed. Consequent!y, when an attempt is made to instantiate a production, the
data elements that might match the condition alements are all immediately available. In this
interpreter, however, only the first two condition elements of each LHS are indexed. Two
other mechanisms are included in the interpreter to make it easy to find the instantiations of
the remaining condition elements. The first is using explicit pointers between data elements.
In many cases, the match routine can instantiate the remaining condition elements simply by
following the pointers from the data elements instantiating the first two condition elements.
The second efficiency measure is an index of the elements in working memory. Both the

21

indices used by HSP are multi-level. The index of the condition elements has from two to five
levels, the exact number in each case depending on the constants appearing in the condition

elements. The index of working memory has two levels.

The interpreters using indexing all have the property that after the indexing step, anoiner
operation has to be performed to determine conclusively whether the productions are
instantiated. This operation can be eliminated by using a mechanism that has been known for
many years. In 1958 Seifridge [51] presented a general mode! for the construction of
pattern recognizers in his "Pandemonium” machine. The machine consists of a lattice of
processing units called "demons”. The demons at the botlom of the lattice continuously
monitor some arez, waiting for a particular event. In a production system this area would be
working memory, and the event would be the addition or deletion of a data element
possessing a particular feature. When the event occurs, the demon makes a note of that fact
and passes the note to the demons directly above it in the lattice. These demons compare
the notes they receive from ine several demons immediately below them, and when cne of
these demons finds an interesting pattern in the notes, it sends a note to the demons on the
next level. When one of the demons at the top of the lattice finds an interesting pattern in
the notes it receives, it takes a more telling action than just sending a note. in a production
system interpreter, these topmost demons would make changes to the conflict set. The Acorn
system [24] uses a network of demons for parsing a subset of English, a process very similar

to the match in a production system interpreter.

In 1S74 this writer developed another variation on the Pandemonium model: the Rete
Match Algorithm [20]. Since that time the algorithm has been used for four production
system languages. Five major variants and numerous minor variants of the algorithm have
been tried. A complete description of the latest and most successful form of the algorithm

will be found in later chapters.

1.6 Overview of the Thesis

The material presented in Chapters 2, 3, and 6 is perhaps the most important in this thesis.
These chapters show hocw to program a conventional computer to interpret production
sysiems more than an order of magnitude faster than the previous state of the art. (The
calculations indicating this are found in Chapter 6.) In addition, Chapter 6 shows how to use
microcode to obtain aimost annther nrder of magnitude increase in speed, and how to
augment the hardware of a conventional computer very slightly and achieve yet another half
order of magnitude increase. The material presented in Chapters 4 and 5 is of perhaps less
intrinsic interest, out it is needed to support the rest of the work. Chapters 4 and 5 describe

the results of analytical and empirical studies of a production system interpreter that uses

22

the techniques described here.

Chapter 2 intrcduces the Rete Match Algorithm. It begins by describing some properties of
production systems that make it possible to construct efficient interpreters. Then, using
examples taken from OPS2 productiun systems, it develops an algorithm capable of taking
advantage of these properties. This algorithm is designed so that it can be implemented on
either serial or parallel computers. Despite the algorithm’s being motivated by OPS2, it is not
specialized for that language; Chapter 2 contains a description of the class of production
systems that can use the algorithm. The chapter ends with a description of the algorithm that
is as detailed as it can be without being specialized to one ianguage.

Chapter 3 describes the most recent interpreter to use the algorithm, the OPS2
interpreter. This chapter contains descriptions of both the programs in the interpreter and
the data operated upon by the programs; enough information is given to allow the reader to
recon=truct the OPS2 interpreter. The structure of this interpreter deviates somewhat from
the general structure given in Chapter 2. Some of the changes are simply attempts to
achieve slightly greater efficiency by taking advantage of the peculiarities of OPS2. One of
the changes, however, is of general interest. By taking advantage of the fact that the
interpreter was to be run on a serial computer, it was possible both to increase the speed of
the interpreter and to decrease the amount of data stored by the interpreter.

Chapter 4 contains an analysis of the OPS2 interoreter algorithm. This chapter determires
how the time and space costs of the algorithm depend on the size of the production system.
The independent variables considered are the number of productions in production memory
and the number of data elements in working memecry. The dependent variables are the
amount of memory required to store the production system, the amount of memory required
for the interpreter’s workspace, and the time required to perform the match. This chapter
contains expected results as well as best and worst case results. In order to derive the
expecied resulis, it was necessary to analyze existing production systems toc discover the
coding conventions that are generally used. A description of the coding conventions is
contained in the chapter. Only the general forms of the functions relating independent and
dependent variables are given in this chapter (e.g,, it is shown there that in the best case,
the time required to perform the match increases with the logarithm of the number of

productions in the system).

Chapter 5 presents measurements of the three largest OPS2 production systems. (The
production systems contained, respectively, 316 productions, 381 oroductions, and 1017
productions.) One series of experiments was undertaken to verify and extend the results in
Chapter 4. Once again, the two independent variables were the number of productions in

23

production memory and the number of data elements in working memory, and the three
dependent variables were the amount of memory required to store the production system,
the amount of memory required for the interpreter’s workspace, and the time required to
perform the match. Another series of experiments was undertaken to verify that the Rete
Match Algorithm could be run efficiently on parallel computers and on computers which use

strategies like caching to improve their processor-memory bandwidth.

Chapter 6 considers the effect of specialized hardware on the interpreter’s efficiency.
This chapter shows that very large increases in speed are possible, and that only minimal
hardware modifications are necessary to bring about the increases. The chapter shcws how
to avoid extensive hardware modifications by adopting appropriate representations for data
elements and productions. It contains a detailed description and justification of ocne possible
representation. Calculations made in this chapter show that a slightly modified processor
could interpret production systems more than two orders of magnitude faster than current
interpreters. This speed increase would be accompanied by an appreciable reduction in the

space required to store the productions.

Chapter 7 summarizes the results of the thesis and suggests areas needing further study.

T XL

24

25

2. The Rete Match Algorithm

This chapter lays the foundations of this thesis by describing the algorithm that will be
investigated here, the Rete Match Algorithm. The first four sections try to motivate the
algorithm. These sections explain how the algorithm tries to get efficiency, and using example
productions drawn from the MKYBAN production system, they show exactly what the
algorithm has to do. The next section contains a concise description of the algorithm
deveioped in the first four sections. The chapter cunciudes with a discussion of the class of

production systems that can use the Rete Match Algorithm.

2.1 Introduction to the Algorithm

This section introduces the Rete Match Algorithm, describing the properties of production
systems that the algorithm tries to exploit, and explaining how the basic organization of the
algorithm helps to exploit them. These production system properties are called tempcra!

redundancy and structural similarity.

2.1.1 Temporal Redundancy

In most production systems, working memory changes rather slowly from cycle to cycie.
Working memory sizes typically fali in the range of fifty to five hundred elements. Firing a
production will typically change two to five of these elements. This fact is important in the
match algoritim design because, with most of the data elements unchanged, most of the
information used by the match for one cycle could be used by the match for the next cycle.
The two to five changes performed by the production that fires may result in a few
productions being instantiated and in a few others loosing their instantiations, but most
productions will neither gain nor loose any instantiations. Moreover, any production that
becomes instantiated was probably close to being instantiated on the previous cycle --
perhaps having instantiations for all but one of its condition elements. The match routine can
take advantage of this by saving from one cyclz to the next an indication of which
productions are instantiated and which condition elements of the other productions are
instantiated, incrementally updating the information to reflect the changed state of working
memory. If it does so, the effort required to perform the match will depend more on the
small number of elements changed than on the much larger total number of elements in

working memory.

2.1.2 Structural Similarity

The L4HSs of a production system usually exhibit a substantial amount of similarity.
Identical condition elements often occur in different productions. Different condition elements

26

often have identical lengths or contain identical constants. MBI11’s condition element, for
example, is identical to MB12’s first condition element. MB12’s second ard third condition
elements both have three subelements, and each has Monkey as its first subelement.

MB11 ((Hant (Monkey Near =P))
->

(Want (Monkey On Floor)))

MB12 ((Want (Monkey Near =P)) (Monkey On Floor)
(Monkey Near =C & #P)
—-—— ‘
(<WRITE> "The monkey walks from"™ =C "to" =P}
(<DELETE> (Want (Monkey Near =P)))
(<DELETE> (Monkey Near =C))
(Monkey Near =P))

If the match routine can recognize the occurrence of identica! features, it can avoid making
the same test multipie times. After determining, for example, that MB11 had no legal
instantiations, it would not waste time trying to instantiate MB12.

2.1.3 Compiling the LHSs

In order to take advantage of structural similarity, an interpreter using the Rete Match
Algorithm must process the LHSs of a production system before beginning execution of the
system. The preprocessing step is necessary because it is in this step that the similarities

are discovered.

The preprocessing step is a compilation that builds a part of the interpreter. An
interpreter using the Rete Match Algorithm is incomplete until a set of productions is
compiled. The interpreter contains programs to perform conflict resoiution, to execute the
productions’ RHSs, and to provide various utility functions like tracing; but it contains no
programs to interpret the productions’ LHSs and perform the match. From the production
system to be executed, the LHS compiler builds a program to perform the match for that one
production system. Since the program constructed by the LHS compiler contains all the
information that is necessary to perform the match, the LHSs may be discarded after it is
built. Most of this chapter is devoted to describing the structure ot these programs and the

way control is passed between their parts.

27

2.1.4 Overview of the Rete Match Algorithm

Perhaps the most unusual feature of a match routine based on the Rete Match Algorithm is
that it never examines working memory. Instead, it monitors the changes made to working
memory and maintains internally information which is equivalent to that in working memory.
At the beginning of a cycle the match routine notes the changes made tc working memory on
the previous cycle. From this information the match routine computes whether any changes
need to be made to the conflict set. 1If there are changes to be made, it sends a list of the
changes to the fixed part of the interpreter, where the conflict set is maintained. With the
state of working memory constantly changing, one production cannot remain satisfied
indefinitely, so the changes to the conflict set include removing old instantiations as well as
inserting new ones. To the rest of the interpreter, the match routine looks like a black box

with one input and one output:

{Changes to M)

Fixed Parts BLACK BOX
of the 0PS2

Interpreter /

(Changes to the conflict set)

2.1.5 The Kinds of Working Memory Changes Supported

In order to keep this chapter from becoming longer than necessary, it will be assumed here
thal only two kinds of changes are made to working memory: adding an element and deleting
an element. These two were chosen because they comprise a minimal logically complete set.
Any cf the other action types provided by a production system language can be simulated by
combinations of these two. Element modification, for example, which is provided in many
languages, can be simulated by one add and one delete. The modify action can appear in the
RHSs of the productions just as it would if it were supported directly by the match. When a
modify is executed, a routine in the interpreter (invisible to the user) intercepts it and
converts it into a delete of the old form of the element and an add of the new form.

Perhaps it should be noted that this assumption is not made because the Rete Match
Algorithm is unable to handle other action types. The next chapter describes a version that

handles three action types.

28

2.2 Non-negated Condition Elements

Describing the algorithm will be easier if negated condition elements (i.e., condition
elements that must fail to match data eiements) are delayed to a later section. This section
considers all other language features, showing how they can be conpiled into the black box

described above.

2.2.1 Froductions with one Condition Element

The match programs built by the LHS compiler are Pandemonium-like networks of simple
feature recognizers because this crganization helps in taking advantage of structural
similarity. As will be shown below, it i5 particularly easy to locate common structure in these
networks and eliminate it. The details of these programs will be iliustrated by compiling
several productions. The simplest productions, those with only one condition element, are

considered first.

Production MBL11 from the MKYBAN production system is typical of these.

MBii { (Want (ronkey Near =P))
-—>
(Want (Monkey On Floor)))

The OPS2Z language definition specifies how this production’s LHS is to be interpreted. The
LHS can be instantiated by any element in working memory that

1. Has two subelements.

2. Has the constant Hant as its first subelement.

3. Has a list of three elements as its second subelement.
4. Has the constant Monkey as the first subelement of the second subelement.
5. Has the constant Near as the second subelement of the second subelement.
No menticn is made of the variable =P because it can be instantiated by anything that can

occur in the OPS2 working memory.

The nodes in the networks test for the occurrence in data elements of features like these.
Each of the nodes has a single edge leading into it and one or more edges leading out. Data
elements are sent to the node over the one incoming edge. Upon the arrival of a data
element, the node is activated to test for the presence of a particular feature. If the test

29

succeeds, the data element is sent out along every edge leaving the node. If the test fails,
the data element is consumed by the node. Since MB11 has five features to test, there are
five of these nodes in its network. These nodes are arranged in a linear sequence; the

output of one node is the input of the next:

Is the element
a list of two subelements?

Is the first subelement
Want?

Is the second subelement
a list of three subelements?

Is th> first subeloment
of the second subelement
Monkey?

Is the second subelement
of the second subelement

Near? l

No input for the first edge or output for the last edge is shown because the nodes at the
ends of these edges do not test data elements. They simply connect this network into the

e

black box.

The node that supplies the inputs for the first node above might be called the input bus of
the black box. This node accepts descfipticns of the changes being made to working memory
and distributes the information to every first node in every condition element’s network. The
network contains only one input bus ncde regardiess of the number of productions in the

system.

The iast edge in the above sequence connects to a node which is concerned with
maintaining the conflict set. When this conflict set node receives a data element, it sends the
data element and the name of the production to the roulines that maintain the conflict set.
Since nodes of this kind have to know the names of the productions, a separate node has to
be built for each production in the system.

The coraplete network for MB11 is

Distribute descriptions of
working memory changes.

Is the element
a list of two subelements?

Is the first subslement
Want?

Is the second subelement
a list of three subelements?

Is the first subelement
of the second subelement
Monkey?

Is the second subelement
of the second subelement
Near? i

Rspott that production
MB11 is satisfied.

2.2.2 The Data Processed by the Nodes

The packets sent between nodes are called tokens.
tag part and a data part. The data part of the token holds either a working memory element
oAU 0T working memory elements. The uses of the tag part cannot be fully explained
until more node types have been described. In nodes of the type shown above, the tag part
simply hclds an indication of the kind of change that was just made to working memory (with
the data part holding the affected data element).
supported by the match, only two tags are iieeded, VALID for elements just added to working
memory and INVALID for elements just deleted from the memory. In this chapter tokens will
be represented as ordered pairs. The first part of the pair is the tag, and the second part is

the data part.

production system include the following.

<VALID, (Uant (Monkey Holds Bananas))>
<VALID, (Want (Monkey On Floor))>
<INVALID, (Want (Monkey On Floor))>

2.2.3 Processing in the Network for MB11

30

Every token has two components, a

If only two acticn types are to be

The tokens that would be processed during execution of the MKYBAN

When a problem like task Tl is started, several data elements are forced into working
memory. The elements in the case of T1 include (Want (Monkey Holds Bananas)) and

RERSSRY

31

(Monkey Near (5 ?7)). When these enter working memory, the interpreter builds tokens
with VALID tags, and the first node in the network passes copies of the tokens to its
immediate successors. One of its successors is the node thzt performs the length test for

MBL11l.

Is the element
a list of {wo subelements?

When this node receives the token

<YALID, (HWant (Monkey Holds Bananas))>

it tests the data part, finds that the length of the data part is two, and sends the ioken to iis

successor.

Is the first subelement
Want?

This node tests the first subelement of the data parf, and since it is Want, it passes the token

¢ .

to its successor.

Is the second subelement
a list of three subelements?

This node tests the length of the second subelement and passes the ioken to its successor.

Is the first subelement
of the second subelement
Monkey?

This node tests the first subelement of the second subelement, finds that it is Monkey and

passes the token along to its successor.

Is the second subelement
of the second subelement
Near?

Th:s node rejects the token; it tests the second subelement of the second subelement and

32

finds Holds rather than Near. It sends nothing to its successor, and processing of this token
in MB11°s network concludes. The rest of the tokens processed when T1 starts are rejected
faster than the first one was. The token

<VALID, (Monkey Near (5 7))>

for example is rejected after the {irst test is applied.

Elsewhere in the network, though, other nodes accept these tokens, and the conflict set
has instantiations added to it. These instantiations execute, resulting in new elements being
added to working memory and old elements being deleted. None of the tokens created to
represent these changes pass completely through MBl1ls network until

(Want (Monkey Near (2 2))) is added. The token

<VALID, (Want (Monkey Near (2 2)))>

passes every test in MBl1’s network and causes the last node to add an instantiation of
MBi1l *n the conflict set. Later (Want (Monkey Near (2 2))) is deleted, causing token

<INVALID, (Want (Monkey Near (2 2)))>

to be created and processed. MB1il’s network passes this token also. The arrival of the
INVALID token at the last node causes the instantiaticn of MB11 to be removed from the .
conflict set.

2.2.4 Productions with Two Condition Elements

A LHS with two condition elements compiles into a network containing two iinear sequences
of nodes (one for each condition element) plus one node to combine the tokens passed by
these two sequences. This section is primarily concerned with describing this last node. Fer
simplicity’s sake, it begins by considering LHSs in which the condition elements share no

variables.

Production MB18 is typical of the productions considered by this section.

MB18 ((Hant (EmptyHanded Monkey)) (Monkey Holds =X)
-——>
(<WRITE> "The monkey drops the" =X)
(<DELETE> (Want (EmptyHanded Monkey)))
(<DELETE> (Monkey Hoids =X)))

The first condition element is instantiated any data element that
1. Has two subelements. o
2. Has the constant Want as its first subelement.
3. Has a list of two subelements as its second subelement.
4. Has the constant EmptyHanded as the first subelement of its second subelement.

5. Has the constant Monkey as the second subelement of its second subelement.
The second condition element is instantiated by any data element that

1. Has three subkelements.
2. Has the constant Monkey as its first subelement.

3. Has the constant Holds as its second subelement.

As in the network for MB11, each of these features compiles into a separate node.

Distribute descriptions of
working memory changes.

Is the clomont / \ﬁ{ho slement

a list of two subelements? a list of three subslements?
Is the first subelement Is the first subelement
Want? Monkey? |

Is the second subelement Is the second subelement

a list of two subelements? Holds?

Is the first subelemcnt
of the second subelement
EmptyHanded?

Is the second subelement
of the second subeiement

Monkey? \

Join the tokens.

Report that production
MB18 is satisfied.

The responsibility of the node with two inputs is to join pairs of data elements -- one
element from the left branch of the network and one from the right -- into lists of two
elements. Since the elements do not generally arrive simultaneously, if it is to perform this
function, it must save state from one activation to the next. Suppose, for example, that the

34

MKYBAN production system is running, but that no element has yet entered working memory
that matches either of the two condition elements. Then the two-input node in MB18’s
network has not been activated, and it is maintaining no state. At some time during the run,
the element (Monkey Holds Ladder) enters working memory. The token

<VALID, (Monkey Holds Ladder)>

is processed, and manages to pass all the nodes in the right branch of this network. The
token reaches the right input of the two-input node and stcps. Since the node has received
no tokens from the other input, it can build no lists. To prepare for the possible arrival of a
token on the left input at a later time, it stores in an internal memory a note to itseif, "I
received the token <VALID, (Monkey Holds Bananas)> over my right input.”" The node

does no more on this activation.

The processing of MKYBAN continues, and eventually the goal
(Want (EmptyHanded Monkey)) enters working memory. The token

<VALID, (Uant {EmptyHanded Monkey))>

is processed by the network, passing through the left branch of MB18’s network, and arriving
finally at the left input of the two-input node. The node examines its memory, finds the note

it made earlier, and builds the token

<VALID, (Want (EmptyHanded Monkey)) (Monkey Holds Ladder)>,

This token is sent to the last node where it causes MB18’s new instantiation to be added to
the conflict set. Before the two-input :izd~ terminates processing, it adds another note to its
internal memory, "I received the token <v4LID, (Want (EmptyHanded Monkey))> over my
left input." This will be needed if it receives another token over its right input.

2.2.5 Deleting Elements from Working Memory

When elements are deleted from working memory, the match routine must update both the
conflict set and those of its node memories that have stored the element. The examples of
processing in MB11’s network (section 2.2.3) showed how the tags are used in the updating
of the conflict set. This section shows how they are used in the updating of the node
memories. In particular, it shows how the use of tagged data allows updating the node

memories without examining every node in the system.

Consider the sxample in the last section again. After MB18’s two-input node finishes

35

processing the second token, it has stored

<VALID, (Want (EmptyHanded Monkey))>

received from the left and

<VALID, (Monkey Holds Ladder)>

from the right. MBLS8 probably fires soon after the second activation of this node. When it
does, it deletes (Want (EmptyHanded Monkey}) and (Monkey Holds Ladder). Suppose

the resulting tokens are processed in this order. Then
<INVALID, (Hant (EmptyHanded Monkey))>

passes through the left branch of the network and arrives at the left input of the two-input
node. The INVALID tag of this token causes the two-input node to delete the note it made
before, "I have received the token <VALID, (Hant (EmptyHanded Monkey))>". The
two-input node then builds a new token much like the one it built when the VALID token
arrived; it takes the element (Monkey Holds Ladder) from its right input memory and joins
it to the data element from the token that just arrived to produce the token

<INVALID, (Went (EmptyHanded Monkey)) (Monkey Holds Ladder)>,

This token is sent to the last node where it causes the instantiation of MB18 to be removed

from the conflict set.

One might ask why the two-input node tagged the token it built with the tag of the token
that just arrived (INVALID) rather than the tag of the token in its memory (VALID). To
answer this it is necessary to understand the reason the token was built. The toker

<INVALID, (Want (EmptyHanded Monkey))>

could not have arrived at the left input of the node unless the token

<VALID, (WHant (EmptyHanded Monkey))>

had arrived earlier, for a data element cannot be deieted from working memory unless it is
present there. Since there was a note in the node’s memory that the token ’

<VALID, (Monkey Holds Ladder)>

36

had arrived on the right input, it had to be true that, at some time in the past, the node had

produced as output the token

<VALID, (Want (EwptyHanded Monkey)) (Monkey Holds Ladder)>,

This node was built because, at the time of its building, it was necessary to add its data part
to the memories succeeding this node. But after the arrival of

<INVALID, (Want (EmptyHanded Monkey))>

it was no longer correct to keep the data part in the memories. The node then had to create

<INVALID, (Want (EmptyHanded Monkey)) (Monkey Holds Ladder)>
to inform its successors of the changed situation.

After processing the token resulting from the deletion of
(Want (EmptyHanded Monkey)), the match processes the one resuiting from the deletion
of (Monkey Holds Ladder):

<INVALID, (Monkey Holds Ladder)>,

This token passes down the right branch of the network and arrives at the right input of the
two-input node. The node is activated to search through its node memory and delete the
note, "1 have received the token <VALID, (Monkey Holds Ladder))> over my right input.”
Since the node has already deleted the note about the one VALID token that arrived from its

left, it produces no outputs.

in the network for the entire MKYBAN production system there are many two-input nodes
(every one of which maintains state like this one) yet only a few were activated on this cycle.
Because the INVALID tokens are subject to the same tests as the VALID tokens, oniy the

nodes whose memories needed to be changed were activated.

2.2.6 How the Two-input Nodes Handle the Tags

To summarize the previous sections, the two-input nodes observe the following three rules

for handling tags.

1. When a token arrives that is tagged VALID, store that token in the internal
memory.

2. When a token arrives that is tagged INVALID, delete from the internal memory a

37

token with an identical data part.

3. When an output token is created, copy the tag of the token that just arrived.

Some two-input nodes test the data elements before building tokens to send to their
successors (see section 2.2.8). The two-input nodes ignore the tags while they are

performing these tests.

2.2.7 The Internal Memories of Two-input Nodes

The notes in the examples above ("1 have received the token
<VALID, (Hant (EmptyHanded Monkey))> on my right input.”) are longer than they need
be. They show the two-input nodes storing three pieces of informaticn about each token:
the tag of the token, the data part of the token, and an indication of whether it arrived on its
left or right input. - Since, as the rules for handling tags show, only tckens tagged VALID are
stored, the tags can be dispensed with. The indication of whether the token arrived on the
left or right input cannot be dispensed with, but it can be factored out of the tokens to save
space. Each node can have two memories rather than one. Tokens arriving from the left can
be stored in one memory, and tokens arriving from the right in the other. Thus only the data

parts of the tokens need to be stored expiicitly.

2.2.8 Variables Occurring in More Than One Condition Element
This section begins the discussion of networks for productions in which variables occur
more than once. Production MB15, with the variable =0 occurring in both its condition

elements, is typical.

MB15 ((Want (Monkey On =0)) (=0 Near =X)
-—>

(Hant (Monkey Near =X)))

Instantiating this production involves the testing of both isolated data elements and pairs of
data elements. The tests of isolated elements are made, as in the previous examples, to test
features like the lengths of lists and the constants in particular positions. These tests are
used for example to locate for the second condition eiement a data element that

1. Has three condition elements.

2. Has the constant Near as its second subelement.

The tests of pairs of data elements are made to insure that both occurrences of the variable

=0 are bound to the same data subelement.

38

In the Rete Maich Algorithm, the two-input nodes perform the tests for consistency of
variable bindirg. The neiwork for MB15, including the test for =0 is

Distribute descriptions < f
working memory changes.

Is the slement Is the element

a list of two subelements? a list of three subslements?
Is the first subelement Is the second subelement
Want? Near?

Is the second subelement
a list of three subelements?

Is the first subelement
of the second subelement
Monkey?

Is the second subelement
of the second subelement
On?

Join those tokens that
allow =0 {o be bound
consistently.

" Report that production
MB18 is satisfied.

To see how this two-input node would work, suppose that the three data elements

(Monkey Near (5 7))
{Want (Monkey Near Ladder))
(Ladder Near (2 2))

enter working memory in this order. Suppose also that nothing else in working memory can
pass either set of one-input nodes for this production. When the first of the data elements
enters working memory, its token passes through the right branch of the network, and the
data part of the token is stored into the two-input node’s right memory. Since the node has
received nothing on its left input, it produces no output. When the second element enters
working memory, its token passes through the left branch of the network. The two-iaput
node stores the data part of the token in its ieft input memory and then examines its right
input memory. It finds (Monkey Near (5 7)) there, but since joining these two elements
would cause =0 to be bound simultaneously to both Ladder and Monkey, the two-input node
still produces no output. Finally (Ladder Near (2 2)) enters working memory. When the
token for this element arrives at the right input of the two-input node, the node stores away
its data part and then examines the left input memory, finding

39

(Want (Monkey On Ladder)). The variable =0 can be bound consistently, so the node
outputs the token

<VALID, (Want (Monkey On Ladder))(Ladder Near (2 2))>,

2.2.9 More Complax Productions

Many productions are more complex than MB1E, containing either more condition elements
or more variabies. Production MBS, for example, contains three condition elements and two
variables. One of the variables occurs in all three condition elements, and two of the

condition elements contain occurrences of both variables.

MBS ((Want (=2 Near =P)) (Light =0) (=C Near #P)

-
(Want (Monkey Holds =D)))

Having more condition elements makes it necessary to have more two-input nodes in the
network; in general, a LHS with K condition elements compiles into a network with K-1
two-input nodes. Having more than one variable in some condition elements makes it
necessary to have more than one test in some two-input nodes. The network for MBS, for

example, is

Distribute descriptions of
working memory changes.

Is the element / the elom‘tn! \l the element

a list of h:/o subelements? a list of two subelements? a list of three subelements?
Is the first subeloment is the first subelement Is the second subelement
Want? Light? Near?

Is the second subelement
a list of three subelements?

Is the second subelemant
of the second subelement
Near?

Join those tokens that
allow =0 to be bound

consistently. \

Join those tokens that
allow «0 to be bound
consistently but do not
allov =P to be bound.

Report that production
MBS is satiafied.

40

For an example of the processing in this network, consider problem T2. The elements
forced into working memory when T2 is started include (Ladder Near (2 2)) and
(Light Ladder). The tokens representing these two elements are processed, passing
through the rightmost and the center branches of the network, respectively. The token for
(Light Ladder) is stored in the right input memory of the first two-input node. The token
for (Ladder Near (2 2)) is stored in the right input memory of the second two-input
node. Later, the element (Hant (Ladder Near (8 2)) enters working memory, and its
token passes down the left branch of MB8’s network. When the first two-input node

receives the token, it builds

<VALID, (Want (Ladder Near (8 2))) (Light Ladder)>

and sends it to the other two-input node. That node builds

<VALID, (Want (Ladder Near (8 2)})
(Light Ladder)(Ladder Near (2 2))>

and sends it to the last node. The last node adds the instantiation of MBS to the conflict set.

2.2.10 Producing Multiple Qutput Tokens

In the examples presented above, the arrival of a token at a two-input node resulted in at
most one token being output. In practice a node often produces more than cne output token.

Consider the network for production MB13 again.

Distribute descriptions of
working memory charges.

Is the element Is the eloment

a list of two subelements? a list of three subelemenis?
Is the first subefement Is the first subelement
Want? Monkey?

Is the second subelement Is the second subelement

a list of two subelements? Holds?

Is the first subelement
of the second subelement
EmptyHanded?

Is the second subelement
of the second subelement

Monkey? \ |
oin ’h:b tokens.

Report that production
MB18 is satisfied.

41

If the following elements entered an empty working memory, the two-input node would
produce no outputs, but it would make one entry in its right input memory for each data

element.

(Monkey Holds Ladder)
(Monkey Holds Orange)
(Monkey Holds Glass)
(Monkey Holds Box)

If {(iWant (EwmmiyHanded Monkey)) entered working memory later, its token would reach

the left input of the two-input node, and cause processing which would result in four tokens

being output.

<VALID, (Want (EmptyHanded Morkey))(Monkey Holds Laddex;>
<VALID, (Want (EmptyHanded Monkey))(Monkey Holds Orange)>
<VALID, (Want (EmptyHanded Monkzc;>}(Monkey Holds Glass)>
<VALID, (Want (EmptyHanded Monkey))(Monkey Holds Box)>

2.2.11 Variables Oczurring Multiple Times in One Condition Element

Sometimes a variable will occur more than once in a condition element. No examples of
such variables are to be found in MKYBAN, but they might be needed in a more general
system. If the relation Near were allowed to hold between two objects, and if the system
incorporated rules about transitivity of nearness (if A is near B and B is near C then A is
near C) it might be necessary tc incorporate rules to recognize incorrect applications of
transitivity. It would be easy to make the mistake of asserting that some cbject is near itself.
The production to correct this could simply erase the data element:

MBX1 { (=X Near =X) --> (<DELETE> (=X Near =X))),

Since there are no two-input nodes in the network for MBX1, the bindings for =X must be

tested for consistency by a one-input node.

42

Distribute descriptions of
working memory changes.

Is the element
a list of three subelemenis?

Is the second subelement

Near? &

Is the first subelement
equal to
the third subelement?

Report that production
MBX1 is satisfiec.

Even if a production contains more than one condition element -- and therefore has
two-input nodes in its network which could test all the variable bindings -~ it is better to test
as many as possible in the one-input nodes. Puiting the tesis before the two-input nodes
reduces the number of tokens that reach them and have to be stered in their input memories.

2.3 Negated Condition Elements

A new node type is needed to compile LHSs containing negated condition elements. This
node has two inputs, but it is quite different from the two-input nodes seen earlier in this
chapter. This section describes this new two-input node.

2.3.1 The <NOT> Node

The examples in this section use production MB19.

MB19 ((Want (EmptyHanded =X)) = (=X Holds =)
-

(<BDELETE> (Want (EmptyHanded =X))))

Since this LHS is interpreted differently from the other LHSs discussed in this chapter, it is
worthwhile to state exactly what the match routine must do to instantiate MB19. First the
match must find individual data alements that instantiate the two conditicn elements. The first

condition element can be instantiated by any data element that
1. Has two subelements.

2. Has the constant Hant as its first subelement.

3. Has a list of two subelements as its second subelement.

4. Has the constant EmptyHanded as the first subelement of its second subelement.
The second condition eiement can be instantiated by any data element that

1. Has three subelements.

2. Has the constant Holds as its second subelement.

The actions taken next depend on whether data elements are found to instantiate one, both,

or neﬁher of the condition elements.

- If there are instantiations for the first condition element and none for the second
condition element, the LHS is satisfied. Hence nothing more need be done in this
case.

- If there is no data element instantiating the first condition clement, the LHS is
unsatisfied; whether there are instantiations ~f the second condition element is
unimportant. So in this case also nothing more need be done.

- [f there are instantiations of both condition elements, the match must test the
bindings to =X. Each possible instantiation of the iirst condition element is
tested against every possible instantiation of the second. if there is an
instantiation of the first that has a consistent binding with none of the
instantiations of the second, the LHS is satisfied. Otherwise it is not.

The tests for the individual subelement features compile into the usual one-input noces.
The new two-input node makes the tests for consistency in variable binding. The network
for MB19 is

Distribute descriptions of
working memory changes.

Is the element Is the element

a list of {wo subelements? a list of three subelements?
Is the first subelement Is the second subelement
Want? ¢ Holds?

Is the second subelement
a list of two subelements?

1s the tirst subelement
of the second subslement

EmptyHanded? \ /
»”

Are there any tokens
from the left that

do not allow consistent
bindings for «X?

If so, pass them.

Report that production
MB19 is satisfied.

44

The minus sign is used in OPS2 as a kind of a macro to be expanded by the compiler.
Production MB19 is interpreted by the compiler as if it were written

MB19 ((Want (EmptyHanded =X)) (<NOT> (=X Holds =))

-——

(<DELETE> (Want (EmptyHanded =X))))

The advantage of the longer form is that, with the arguments delimited by parertheses, any
number of them may be given to <NOT>. The same kind of two-input node is used to join a
<NOT> to the surrounding non-négated condition elements, regardless of the number
arguments the <NOT> has. This two-input node will be called a "<NOT> node".

2.3.2 Memories at the <NOT> Node

One of the few similarities in the two kinds of two-input nodes is that they both maintain
internal memories. Both store information in their memories when tokens tagged VALID
arrive, and both delete the information if the same token tagged INVALID later arrives. Both
have one memory for tokens arriving on the left input and another for tokens arriving on the
right, and both read from the memory of one input when a token arrives on the other input.
Despite these similarities, however, the two node types differ somewhat in their use of the

memories, as the following sections will show.

2.3.3 New INVALID Tokens Arriving on the Right

Describing the processing of the <NOT> node is simpler if individual treatment is given to
each of the various situations the node has to cope with. The arrival on the right of a token
tagged INVALID is potentiaily the most difficult of the situations. Because the processing the
node performs in the other cases is determined partly by the need to make handling this case

easier, this case is considered first.

An example will show the problem that must be solved to handle this case correctly.
Suppose MKYBAN is working with two monkeys at the same time. The production system has
been running for a number of cycles, and the changes made to working memory have caused

the <NOT> node to receive the tokens

<VALID, (Monkeyi Holds Ladder)>
<VALID, (Monkeyl Holds Grange)>
<YALID, (Monkey2 Holds Orange)>

over its right input and the token

45

<VALID, (Want (EmptyHanded Monkey1))>

over its left input. Production MB19 is not instantiated. If the token

<INVALID, (Monkeyl Holds Orange)>

arrives over the right input, MB19 is still not instantiated. But if
<INVALID, (Mankeyl Holds Ladder)>

arrives next, MB19 is instantiated. The remaining entry in the right memory -- for
(Monkey2 Holds Bananas) -- does not prevent the instantiation because =X cannot be
bound to Monkeyi and Monkey2 simuitaneously. If the two INVALID tokens had arrived in
the cpposite order, MB19 would have been instantiated only after the arrival of

<INVALID, (Monkey Holds Orange)>,

Regardless of the order in which the two INVALID tokens arrive, the node should send out
nothing after the arrival of the first, but after the arrival of the second it should send out the

token

<VALID, (Want (EmptyHanded Monkey))>,

The problem to be solved in the design of the <NOT> node is how to determine when to send

out tokens like this without excessive effort.

The soluticn adopted in the Rete Match Algorithm is to store a count along with every
entry in the left memory. This count indicates how many entries in the right memory allow
variables to be bound consistently. When an INVALID token arrives on the right input and
causes an element to be deleted from the right memory, the variable binding tests are
repeated for every element in the left memory. When one is found thai has consistent
variable bindings, the count is decremented by one. If a count becomes zero, the node builds
a token tagged VALID for the corresponding entry in the left memory. In the example above,
the count for (Want (EmptyHanded Monkey1)) was initially two. When the first token
arrived frem the right, the count was decremented to one. When the next token arrived, it

was decremented to zero, resulting in the sending out of

<VALID, (Want (EmptyHanded Monkey1))>.

a6

One reason for choosing this solution to the problem is that it keeps reasonably small the
amount of state to be stored in the <NOT> nodes. The right memories store the same
information as the right memories of the other kind of two-input nodes: the data parts of the
VALID tokens. The left memories store an integer along with each data part.

2.3.4 New VALID Tokens Arriving on the Right

The events resulting from the arrival of a VALID token on the right input of a <NOT> node
are the inverse of those resulting from the arrival of an INVALID token. First the node stores
the data part of the token in its right memory. Then it examines every entry in its left
memory, incrementing the count of those that allow consistent variable bindings. When it
increments a count from zero to one, it builds a token for the entry and sends the token to

its successors. The new token is tagged INVALID.

To see how this works, consider the example from the last section again. Suppose the
VALID tokens had arrived at the two-input node in this order: first

<VALID, {Nant (EmptyHanded Monkey1))>

on the left input and then in crder

<VALID, (Monkey2 Holds Orange)>
<VALID, (Monkeyl Holds Ladder)>
<YALID, (Monkey!i Holds Orange)>

on the right input. When the node received the token from the left, it stored the data part in
its left memory with a count of zero and then passea the token to its successor. (See the
next section.) When it received the first token from the right, it stored the data part in its
right memory and then tested the elements it had stored in its left memory. Since the
element there, (Want (EmptyHanded Monkey1)), did not allow consisteni variable bindings,
it ieft the count unchanged and produced no output tokens. When the next token arrived, the
node stored iis data part and then examined the left memory again. This time the node fouind
the variable could be bound consistently, so ii increased the count from zero to one. This

change in count caused it to output the token

<INVALID, (Want {EmptyHanded Monkey1))>,

Finaliy the last element arrived on the right. The node stored the data part and examined its
left memory a third time. It found the variable could be bound consistently, and incremented

47

vthe count again. Since it changed the count from one to two this time, however, the node
produced no cutput.

2.3.5 Tokens Arriving From the Left

A <NOT> node treats all tokens arriving from the left similarly. The only difference is that
the node makes an entry in its left memory when the token is tagged .VALID and deletes an
entry when it is tagged INVALID. Because of the similarity, the two kinds of tokens are
considered together in this section.

When there is nothing in the right memory, the <NOT> node passes to its successors every
token it receives on its left input. Suppose that the right memory of ME19’s <NOT> node was

empty when

<VALID, (Want (EmptyHanded Monkey))>

arrived on its left input. The node would store the data part of the token in its left memory
with a count of zero. It would then send the token (unchanged) to its successor. If

<INVALID, (Want (EmptyHanded Monkey))>

later arrived.on the left, the node would delete the information it stored before and send this

new token to its successor.

When there are elements stored in the right memory, the ncde must examine them before
it can determine what to do with a token arriving on the ieft. If the node finds an element in
the right memory that allows the variables to be bound consistently, the node sends out
nothing. If it finds no elements that allow consistent variable bindings, the node passes the
token to its successors. If the token is tagged INVALID, the node then deletes an entry from
its left memory. If the token is tagged VALID, the node stocres it in its left memory. In
deciding whether to produce any outputs, the node would have counted the number of
entries in the right memory that allowed consistent variable bindings. It stores this count

along with the data part of the token. Thus if

<VALID, (Want (EmptyHanded Monkey1))>

arrived on the left input of MB19’s <NOT> node after

<VALID, (Monkeyl Helds Ladder)>
<YALID, (Monkeyl Holds Orange)>
<VALID, (Monkey2 Holds Orange)>

48

had arrived on the right, the node would produce no output, and it would store
(Want (EmptyHancded Monkey1)) in its left memory along with a count of two. If

<INVALID, (Want (EmptyHanded Monkeyl1))>

arrived next, it would delete the entry it just made, and again produce no output.

2.3.6 How the <NOT> Nodes Handle the Tags

The rules for handling tags given in section 2.2.6 are not used by the <NOT> nodes. The

rules for thesz nodes are:

1. When a token arrives that is tagged VALID, store that token in the internal
memory.

2. When a token arrives that is tagged INVALID, delete from the internal memory a
token with an identical data part.

3. Wheii an suiput token is created as the result of processing a token that arrived
from the left, copy the tag of the token that jus! = -wed.

4. When an output token is created as tie re-uit . ;. -.:2ssing a token that arrived
from the right, invert the tag ot th: toke = that ,.si arrived and make that the
tag of the new token.
In addition, the tags of the tokens arriving on the right input are used to determine whether

to increment or decrement the counts in the left memory.

2.4 Efficiency Issues

This section is concerned with the cost of using the Rete Match Algorithm. The first two
subsections explain how the algorithm takes advantage of temporal redundancy and structural
similarity. The last subsection shows that the algorithm is capable of being executed in
parallel. Parallel execution is an efficiency issue because an algorithm which cannot be
executed in parallei cannot make efficient use of modern hardware. With present day
hardware technology, the least expensive way to build a powerful computer is to build a
highly parallel computer.

2.4.1 Temporal Redundancy

The response of the algorithm to temporal redundancy should be clear by now. The
network processes data elements only when they change; it stores the information about the
data elements as long as they remain uncharged.

2.4.2 Structural Similarity

The Rete Match Algorithm takes advantage of structural similarity by sharing nodes
When two LHSs compile into sequences of nodes containing identical
initial subsequences, the initial subsequences are shared. The sharing is heaviest, of course,
MB15 and MBL16, for example, contain twe identical

between productions.

when productions are very similar.

condition elements.

MB1S

MB16 ((Want {Monkey On =0)) (=0 Near

When these two productions are compiled together, most of the nodes in the network are

shared.

-

(Want (Monkey Near =X)))

-—>

((Want (Monkey On =0)) (=0 Near

xX)

(Want (EmptyHanded Monkey)))

Is the element
a list of two subslements?

Is the first subslamont
Want?

Is the second subelement

a list of three subelements?
v

is the first subelement

of the second subelement

Monkey?

Is the second subeloment
{ the socond subelement
On?

Distribute descriptions of
working memory changes.

Is the second subolomont

Jom thoss tokens that
allow =0 to be bound

consistently.

Report that produchon
MBIS is satisfied.

Is the element
e hs{ of thres sybsloments?

Monkey?

Is the socond subslement

Near?

J

Join those tokens that
allow =X to be bound
consistently.

Report that production
MB16 is satisfied.

=X) (Monkey Near =X)

h%ml subelement

50

Even dissimilar productions often allow some sharing:

MB1S ((Want (Monkey On =0)) (=0 Near =X)
-
(Want (Monkey Near =X)))

MB18 ((Want (EmptyHanded Monkey)) (Monkey Holds =X)
-
(<WRITE> "The monkey drops the" =X)
(<DELETE> (Want (EmptyHanded Monkey)))
(<DELETE> (Monkey Holds =X)))

The network for MB15 and MB18 contains seventeen nodes; it would contain twenty if nodes

were not shared.

Distribute descriptions of
working memory changes.

Is the element

Is the element
a list of three subeiementa?

a list of two subelements?
1
v
Is the first subelement
Want?

Is the first subelement
Monkey?

Is the second subelement

Near?

Is the second subeloment

Is the second subelament
Holds?

a list of three subeloements?

Is the second subelement
a list of two ‘subelomonls?
Is the first subslement I

of the second subelement /
Monkey?

'~ v —,
T .

Is the first subelement
of the second subalement
EmptyHanded?

v

1s the second subslement
of the second subelement
On?
Is the sacond subciemant
of the second subglement
Monkey?

Join those tokens that Join the tokens.
allow «0 {o be bound
consistently.

Report that production Report that production
MBI15 is satisfied. MB18 is satisfied.

51

Although this chapter is not concerned with details like the representation of nodes in the
interpreter, one comment about the representation should be made here: if variables are
represented as they have been in the example networks of this chapter, some potential for
sharing is lost. Consider productions MB15 and MB16 again. Suppose that MBS wvras
replaced by MB15’, which is identical to MB15 except that the variable =0 is renamed to =2

MEiS' ((Want (Monkey On =2)) (=2 Near =X)
->
(UYant (Monkey Near =X)))

MB16 ((Hant (Monkey On =0)) (=0 Near =X) (Monkey Near =X)
L4

(Want (EmptyHanded Monkey)))

MB15’ is functionally identical to MBI15; it matches the same data elements, and it performs
the same processing. In general, renaming a variable has no effect provided the renaming is
carried out uniformly throughout the production and provided the variable is not given a
name that already exists in the production. But with the representation of nodes assumed in
this chapter, renaming a variable would have an effect on the network built by the LHS
compiler. Since the variable binding nodes contain the names of the variables, renaming the
variables could z¢‘ect the sharing of these nodes. In the network for MB15* and MB16, for
example, no:t\.vo-;nput noges could be shared. This effect of variable names on sharing can
be eliminated, however. The names of the variables can be replaced in the nodes by integers
that indicate where the variables occur in the condition elements.

2.4.3 Parallelism

This subsection discusses parallel execution of the algorithm. It considers two kinds cf
pa, allelism: processing many nodes at once and processing more than one working memory
change at once. It shows that if the nodes are defined properly, then (1) no synchronization
wil! be needed beyond that provided by the tokens, and (2) the results computed by the
match will not depend on the order in which nodes with pending inputs are executed, or on

the number of nodes active at one time.

The easiest way to examine the effects of parallel execution is to consider the different
kinds of nodes in the order in which they occur in the networks. The first levels cf the
network contain the one-input nodes. The next levels contain the two-input nodes. The final
level of the network contains the nodes for changing the conflict set.

The one-input nodes certainly work properly when the match is executed in parallel. Since

52

a one-input node maintains no state, the processing it performs when activated by some
token depends only on the specification of the node and the contents of the token. Other
activity in the network and the history of the node have no effect.

The next nodes to consider are the two-input nodes that have cnly one-input nodes for
predecessors. Since these nodes maintain state, they are sensitive to the order in which
their inputs arrive. An exampie will show the effect of the order. Consider the network for

MB1G.
“B10 ((Hant =2) =2 --> (<DELETE> (Want =2)))

The network is

Distribute descriptions of
working memory changes.

Ia the element
a list ¢f two subelements?

Is the first subelement
Want?

oin those tokens that

allow =2 to be bound
‘consistently.

Report that production
MB10 is satisfied.

At the beginning of a run of MKYBAN, the token

<YALID, (Want (Monkey Hoids Bananas))>

is processed by the network. This token arrives at the left input of MB10’s two-input node.
Nothing that arrives on the right input will allow =2 to be bound consistently until the end of
the run when MBA4 fires. Vhen this production fires it causes the network to process two

tokens

<INVALID, (Want (Monkey Holds Bananas))>
<YALID, (Monkey Hclds Bananas)>,

If

53

<VALID, (Monkey Holds Bananas)>

reaches the two-input node first, the node will send out the token

<VALID, (Want (Monkey Holds Bananas))(Monkey Holds Bananas)>

wHich will result in a new instantiation being added to the conflict set. Then when

<INVALID, (Want (Monkey Holds Bananas)>

arrives at the two-input node, the node will send out

<INVALID, (KHant (Monkey Holds Bananas))(Monkey Holds Bananas)>

which will cause the instantiation to be removed from the conflict set. If the node had
received the tokens in the other order, however, it would have nroduced no outputs. Thus in
both cases, the final contents of the conflict set are unchanged, but in one case the node
cutputs a token and then immediately outputs another one with the opposite tag to reverse
the effects of the first. These pairs of tokens with identical data parts and complementary

tags are called conjugate pairs.

Before continuing with the two-input nodes, it shouid be noted that this example shows a
limit on the ability of the algorithm to execute in parallel. Ideally, there would be no
dependence on the order in which the pending tokens were -hosen for processing. But in

the example above, if

<INVALID, {ilant (Monkey Holds Bananas))(Monkey Holds Rananas)>

arrived at the last node before

<YALID, (Want (Monkey Holds Bananas))(Monkey Holds Bananas)>

was processed, and then if the node processed the INVALID token before the VALID token,
the conflict set would be changed incorrectly., When the INVALID token wes processed,
nothing could be removed from the conflict set. Then when the VALID token was processed,
an instantiation of MB10 would be added. To prevent this problem, the edges must deliver
the tokens to the nodes in tiie order they are placed on the edges.

To return now to the two-input nodes succeeding the one-input nodes: Since the
assumption has been made that the edges maintain the order of the tokens, it is necessary
only to consider tokens arriving on different inputs. A case analysis will show that the only

54

effect of order (other than the obvious effect of changing the order of the output tokens) is
that conjugate pairs are sometimes produced. The case analysis will involve two tokens, L,
which arrives on the node’s left input, and R, which arrives on its right input. L and R allow
consistent variable bindings. (Tokens that do not allow consistent variable bindings can be

ignored since they do not interact with one another.)

The first case is that both tokens are tagged VALID. With this tag, L and R will both be
stored inio the node memories when they are processed. Observe that when a node quiesces
after processing an input token, every element in the right memory has been tested against
every element in the left, and every element in the left memory has been tested against
every element in the right. Thus a test will be performed between L and R when the second
one of the two arrives. Whether an output token is produced zfter the test does not depend
on the order of their arrival if the node is one of the ordinary two-input nodes. If the node
is a <NOT> node, and if R is the only element in the right memory that allows consistent
variable bindings with L, then a conjugate pair is produced when L arrives first. When L
arrives, it is output by the node; when R arrives, the conjugate of L is output.

The second case is that both L and R are tagged INVALID. These tokens could not arrive
unless their data parts were already stored in the node memories. Since the first to arrive
causes its data part to be removed from the memories, the test between their data parts
occurs only once -- when the first token is processed. If this is an ordinary two-input node,
whether tokens are output does not depend on the order of arrival. If this is a <NOT> node,
and if R is the only element in the right memory that allows consistent variable bindings with

L, then a conjugate pair is produced when R arrives first.

The third case is that L is tagged VALID and R is tagged INVALID. When L is processed, an
element is stored in the left node memory. When R is processed, an element is deleted from
the right node memory. If the node is an ordinary two-input node, a conjugate pair is
produced when L arrives first. If the node is a <NOT> node, whether tokens are output does

not depend on the order.

The final case is that L is tagged INVALID and R is tagged VALID. When L is processed, an
element is deleted from the left node memory. When R is processed, an element is added to
the right memory. If the node is the ordinary kind of two-input node, a conjugate pair is
produced when R arrives first. If the node is a <NOT> node, whether tokens are output does

not depend on the order.

The two-input nodes that are successors to other two-input nodes must cope with twe
effects of parallel processing: getting their inputs in an arbitrary order and sometimes
receiving conjugate pairs. The effects of token arrival order are as they were for the other

855

two-input nodes -- conjugate pairs are sometimes produced. It can easily be seen that the
effects of conjugate pairs cancel out. When the first token of a conjugate pair arrives at a
two-input node, it causes a change in the node’s internal state, and possibly causes some
tokens to be sent out. Because the tags are treated symmetrically by the two-input nodes,
when the second arrives, it will causé the node’s state to change back, and if tokens were
output before, it will cause the conjugates of these to be output.

The final kind of node to be considered is the node for changing the confiict set. Since the
only actions performed by this node are adding elements to and deleting elements from a set,
the order in which the tokens arrive at these nodes certainly does not matter. Neither, as
the example above showed, does the processing of conjugate pairs.

In summary, the Rete Match Algorithm is capable of parallel execution provided the edges
maintain the order of the tokens passed over them.

2.5 The Node Programs

The preceeding sections have raised a series of issues and described the Rete Match
Algorithm’s response to each issue. The result is a complete, but long description of the
essential features of the algorithm. This section contains a more concise description.

The simple Rete Match Algorithm described in this chapter uses six classes of nodes.
These are the bus node (the node that reports working memory changes to the rest of the
nodes); the one-input nodes that test variabie bindings; the one-input nodes that test
constant features (e.g., the length of a list or the identity of an atom); the two-input nodes
for non-negated condition elements; the <NOT> nodes; and the nodes that report changes to
be made to the conflict set. Each of these classes is described below by listing two things:
the information that is built permanently into a node of that type, and the processing

performed a node when it is activated.

2.5.1 The One-input Nodes for Testing Constant Features
Built into a one-input node for testing constant features are

- The index of the subelement to test.
- A constant to compare the subelement {or its iength) to.
- A description of the test to be performed.

- A list of the edges leaving the node.

56

When the node is activated by the arrival of a token, it performs three steps and then

halts, passivating itself to await the next token:

1. Extract the subeliement to be tested.

2. Perform the test.
3. If the *est succeeded, send the token to the successors.

4, Halt.

2.5.2 The One-input Node for Testing Variable Bindings
Built into a one-input node for testing variable bindings are

- The indices of the two subelements to test.
- A descripiion of the test it is to perform.

- A list of the edges leaving the node.

When the node is activated it perferms the following steps:

1. Extract the first subelement.

2. Extract the second subelement.

3. Perform the test.

4, 1f the test succeeded, send the token to the succ.ssors.

5. Halt.

2.5.3 The Ordinary Two=input Node

The amount of information buiii into a two-input node depends on the number of variables
tested by the node. For each variable to be tested, it has:

- Two indices of subelements.

- A description of the test tc perform on the two subelements.
In addition, it has the usual links to its successors:

- A list of edges leaving the node.

The processing performed by the node depends on the edge over which the token arrived.

If it arrived from the left:

57

1. If the token is tagged "VALID", store the data part in
the left memory; otheruise find and delete an identicai
data part from the left memory.
2. Foreach data part in the right memory
Begin
3. Set FAIL = @.
4. Foreach variable to test until FAIL =1
Begin
5. Use the first index to extract a subelement
from the left data part.
6. Use the second index to extract a subelement
from the right data part.
7. Perform the test.
8. If the test failed, set FAIL = 1,
End
9. 1f FAIL = B,
Begin
18. Set D = the data part of the token
from the left concatenated with the data
part of the token from the right.
11. Buiid a token using D and the tag part
of the token that just arrived.
12. Send the neuw token to the successors.
End
End
13. Halt.

The processing performed when the token arrives from the right is similar, except that in
some places (but not all -- see steps T, 6, and 10) the roles of left and right are reversed.

1. If the token is tagged "VALID", store the data part in
the right memory; otheruise find and delete an identical
data part from the right memory.
2. Foreach data part in the left memory
Begin
3. Set FAIL = 8.
4, Foreach variable to test unti! FAIL =1
Begin
5. Use the first index to extract a subelement
from the left data part.
6. Use the second index to extract a subelement
from the right data part.
7. Perform the test.
8. If the test failed, set FAIL = 1.
End
9. If FAIL = 8,
Begin .
18. Set D = the data paert of the token
from the left concatenated uitht the data
part of the token from the right.

58

11. Build a token using D and the tag part
of the token that just arrived.
12. Send the new token to the successors.
End
End
13. Halt.

2.5.4 The <NOT> Node

A <NOT> node holds the same information as a regular two-input node. It has the usual

links to its successors:
- A list of edges leaving the node.
For each variable to be tested, it has:

- Two indices of subeiements.

- A description of the test to perform on these two.

When a <NOT> node receives a token on its left input it performs the following:

1. Set COUNT = @.
2. Foreach data part in the right memory
Begin
- 3. Set FAIL = 8.
4, Forasch variable to test until FAIL =1
Begin :
5. Use the first index to extract a subeiement
from the lef: data part.
6. Use the second index to extract a subelement
from the right data part.
7. Perform the test.
8. If the test failed, set FAIL = 1.
End
9. If FAIL = B, set COUNT = COUNT + 1.
End
18. If the token that just arrived is tagged "VALID", store
COUNT and the data part in the left memory; otheruise delete
an identical data part and its count.
11. If COUNT = 8, send the token that just arrived to the
successors.

12. Halt.

The processing performed when a token arrives from the right is quite different:

59

1. If the token is tagged "VALID", store the data part in
the right memory; otheruise find and delete an identical

data part from the right memoruy.
2. 1f the token is tagged "VALID", set INC = 1; otheruise

set INC = -1.
3. Foreach data part in the left memory
Begin

4. Se* NEWCOUNT = the count stored with the data part.
5. Set FAIL = @.
b. Foreach variable to test until FAIL =1
Begin
7. Use the first index to extract a subeilement
from the left data part.
8. Use the second index to extract a subelement
from the right data part.
9. Perform the test.
18. 1f the test failed, set FAIL = 1.
End
. 11. If FAIL = B,
Begin
12. Set NEWCOUNT = NEWCOUNT + INC.
13. Replace the count in the left memory with
NEWCOUNT.
14. If (NEWCOUNT = B and INC = -1)
or (NEWCOUNT = 1 and INC = 1),
Begin
iS5, If INC = -1, set TAG = "VALID";
otheruise set TAG = "INVALID".
16. Build a token using TAG and the
data part from the left.
17. Send the neu token to the successors.
End

~e

End
End -
18. Halt.

2.5.5 The Node That Changes the Conflict Set

The node that changes the conflict set has only one item of information built into it

- The name of the production it represents.

The processing it performs upon the arrival of a token depends on the tag of the token:

1. If the token is tagged "VALID", add the data part of

the token and the production name to the conflict set;
ctheruise, remove an identical entry from the conflict set.
2. Halt.

60

. 2.5.6 The Bus Node

The node that reports working memory changes to the rest of the network has built into it

only one ihing:

- A list of the edges leaving the node.

This node cannot be activated in the same manner as the other nodes. No tokens can be
sent to it since this is the node where the first tokens are built. Exactly how it is activated
depends on the structure of the rest of the monitor, so that will not be shown here. The
assumption is made simply that it is activated after every working memory change. If the
only changes made to working memory are adds of new elements and deletes of existing

elements, the processing performed upon its activation is:

1. If the working memory change was an add, set TAG = "VALID";
otheruise, set TAG = "INVALID".

2. Build a token using the affected ucrking mecmery element
and TAG.

3. Send the token to the successors.

4. Halt.

2.5 The Range of Aprlicabilily of the Algorithm

l.ithough this description of the Rete Match Algorithm has been motivated solely by
examples from OPS2, the algorithm can be used for other languages as well, including
languages quite unlike OPS2. The following paragraphs describe the range of applicability of
the algorithm; they consider individually (1) the kinds of data elements that can be processed,
(2) the kinds of subelement tests that can be used (that is, what can be used to compose a
condition element), and (3) the allowable ways of combining condition elements to construct
LHSs.

There is a fundamental restriction on the kinds of data elements that can be processed by
the algorithm, but the restriction is not that they must be OPS2-style lists. The restriction is
that they must contain only constants. Variables and match functions cannot be handled
without revising the nodes and the network interpreter. That the algorithm is not restricted
to list structured data elements can be argued most easily by appealing to the generality of
OPS2. Appendix il shows that OPS2 data elements can simulate name-attribute-value triples,
strings, sets, and other data tvpes. Since the transformations between formats are purely
mechanical, it would be possible to write a program that would accept productions and data

61

elements in one of the other formats and translate them into OPS2 productions and data
elements. This translator together with the OPS2 interpreter would comprise an interpreter

for production systems that use the other data format.

The subelement tests are limited in one important respect: the tests must be independent.
The tests cannot cooperate because the nodes are not allowed to communicate except by
sending tokens. This limitation has two particularly important manifestations. First, partial
matches cannot be computed. For example, the algorithm as defined here would not support
a language that allowed matches between elements provided a certain percentage of their
constant subelements were equal. Second, it must be possible to determine at compile time
which data subelement each condition subelement will match. For example, if the symbol ".."
were defined to match any arbitrary segment from a list, the following preduction could not

be compiled.

Unc ((OOO A s =X cee =X oo A oo.) > =X)

This requirement of independence is the only limit to the subelement tests. The Rete Match
Algorithm can handle any test which will accept a data subelement (two subelements in the
case of the variables) and return TRUE or FALSE. In fact, the OPS2 interpreter allows the
user to define his own tests, which are compiled into the network as the predefined tests are.

Condition elements can be combined in almost any fashion when the Rete Match Algorithm
is used. (OPS2, for example, allows almost arbitrary use of conjunction and negation. An
OPS2 LHS msy ccntain arbitrarily many condition elements. Negation may apply both to
single condition elements and to conjunctions of other condition elements, including
conjunctions that contain other instances of negation. And conjunciions and negations may be
nested to arbitrary depths. Adding disjuntions of condition elements would entail a few
changes to the compiler, but the network interpreter could be used unchanged.

63

3. The OPS2 Interpreter

This chapter contains a detailed description of the OPS2 interpreter, the most recent .
production system interpreter to use the Rete Match Algorithm.1 The information contained in
this chapter is necessary to understand the cost analyses made in the next chapter. Chapter
3 begins by explaining two major differences between the algorithm described in Chapter 2
and the OPS2 match algorithm. Then it describes the format oi the nodes and tokens in OPS2.
Finally it describes the processing performed by the nodes. The description in this chapter is
complete enough to allow the reader to duplicate the match part of the OPSZ interpreter.

3.1 Reducing the Cost of Storing Tokens

Because the OPS2 interpreter was designed to run on a uniprocessor, the algorithm from
Chapter Z could be changed in a way which significantly reduces the number of tokens stored

in the network. This section describes the change.

3.1.1 Separate Memory Nodes

The two-input nodes described in the last chapter perform two related but distinct
functions. They maintain internal memories contairing the data parts of tokens, and they
compare pairs of data paris to determine which allow consistent variable bindings. Although
most interpreters using the Rete Match Algorithm do have two-input nodes of this kind, some
versions use simpler nodes. In the OPS2 interpreter, ihree simple nodes are used to perform
the functions of one of the more complex two-input nodes. One node maintains the left
memory, a second maintains the right memory, and a third performs the variable binding tests.

A typical node from the last chapter

Join those tokens that
allow =0 to be bound
consistentiy,

becomes in OPS2:

v

Update the memory, Update the memory,
N

Join those tokens that
allow =0 to be bound
consistently,

11he OPS2 language is described in [22].

64

Instead of two internal memories, a two-input node in OPS2 contains pointers back to its two

predecessors. The predecessors are memory nodes.

Memories have been sepérated out of the two-input nodes because this increases the
potential for sharing. Memory nodes can be shared between two productions if the
productions have condition elements that are identical except for variables. The third
condition element in MB1 and the second condition element in MB15, for example, allow

sharing a memory node.

MB1 ((Want (Monkey Holds =W)) (High =H) (=W Near =P)
-3

(Want (Ladder Near =P)))

MB15 ¢ (Want (Monkey On =0)) (=0 Near =X)
-
(Want (Monkey Near =X)))

The network for these two productions contains five memories; six would have been required

if the memories were internal to the two-input nodes.

65

Distribute descriptions of
working memory changes.

Is the element Is the elom}nt
a list of two subelements? a list of three subelements?
1s the first subelement 1s the second subslement

Want?

Is the second subelement
a list of three subelementis?

Is the first subeloement Is the first subelement
of the second subelement High?
Monkey? I
Is the second subelement Is the second subelement
of the second subelement of the second subslement
On? Holds?
Update the memory. Update the memory.

\ \ Update the memory. Update the memory.

Join those tokens tha
sllow =0 to be bound
consistently.

Report that production Join those tokens that
MB!5 ig satisfied. allow «W to be bound
consistently.

Update the memory.

Join those tokens that
allow «W to be bound
consistantly.

Report that production
MBI is satisfied.

Breaking up the two-input nodes improves the efficiency of the algorithm in some ways,
but degrades the efficiency in one. Both the time required to update the network on each
cycle and the number of tokens stored in the network are reduced by breaking up the nodes.
But even with sharing of the memory ncdes, the total number of nodes in the network is

increased.

3.1.2 Memories for <NOT> Nodes

The <NOT> nodes do not share their left memories. Recall that the left memory of a <NOT>
node siores a count along with each data part. Since these counts have meaning only to the
node that generated them, they would present problems if stored in a shared structure. Thus

66

the <NOT> nodes should store the counts internally. The <NOT> nodes could store only the
counts, relying on memory nodes to store the data parts. But when the OPS2 interpreter was
designed, it was deemed simpler to have the data parts and the counts stored together.
Hence the left memory of the <NOT> node was kept internal to the node. Since the right
memory of a <NOT> node stores only data parts of tokens, it can be shared like the memories

of a regular two-input node.

3.1.3 The Processing Performed by the Memory iNodes

The memory nodes perform only three functions. They maintain their internal memories,
they pass tokens along edges leading to the right inputs of two-input nodes, and they pass
tokens along edges leading to the left inputs of two-input nodes. The order in which these
operations are performed is critical. Consider the following preduction:

EX1 ((LE =X =Y) (LE =Y =X) -=> (EQ =X =Y)),

Because the two condition elements are identical except for the order of the variables, the
two-input node in EX1’s network shares a memory node with itself.

Distribute descriptions of
working memory changes.

Is the element
a list of three subelomenis?

Is the first subelement
LE?

Update the memory.

Join those tokens that
allow «X and «Y to be bound
consistenily.

Report {hai.produc!ion
EX1 is satisfied.

If the element (LE P P) entered an empty working memory, EX1 would have a legal
instantiation, and this network shouid find it. But if the memory node performs its operations
in the wrong order, the network might either fail to add the instantiation to the conflict set or

add it twice.

Suppose the memory node modified its internal memory before sending the token to its
successors. Then when the token

67

<VALID, (LE P P)>

arrived at the memory node, the node would store away the data part of the token and then
send the token over every edge leaving the node. Since two edges connect the memory
node to the two-input node, the token would arrive at the two-input node twice. If it arrived
on the left first, the node would look at its right memory and find (LE P P) there. Since the
variables can be bound consistently, the node would send out the token

When the token
<VALID, (LE P P)>

arrived on the right input, the node would check its left memory, find (LE P P) there, and

again send out the token

<VALID, (LE P P)(LE P P)>,

The last node would thus receive two identical tokens and add two instantiations of EX1 to

the conflict sei.

Since the match proceeds incorrectly if the memory nodes modify their internal memories
before sending out the tokens, suppose that the nodes modify their memories after sending
the tokens. If this is to be deterministic, it must be assumed that the memory nodes allow
their successors to finish processing before modifying their memories. Then when the

memory node received the token

<VALID, (LE P P)>

it would immediately send it out along the edges leaving the node. If the token arrived first
at the left input of the two-input node, the node would check its right memory, find nothing
there, and produce no cutputs. When the token arrived at the right input, the node would
check its left memory, find that empty also, and again produce no outputs. Finally the
memory node would modify its memory, too late for the two-input node to produce an output.

The match will proceed correctly only if the memory node distinguishes the edges that
reach right inputs of nodes from the edges that reach left inbuts of nodes. One correct
sequence is first send the token out along the edges leading to left inputs of two-inrut
nodes, wait for all the nodes to finish processing, then modify the node memory, and finally

68

send the token out along the =dges leading to the right inputs. If the memory node did this,
when

<VALID, (LE P P)>

arrived, it would first send the token along the edge leading to the left input of the two-input
node. The two-inout node would check its right memory and, finding nothing there, produce
no output. When the two-input node finished processing, the memcry node would add
(LE P P) to the memory and send the token out along the edge leading to the right input of
the two-input node. The two-input node would check its left memory and find (LE P P)
there. Since the variablas can be bound consistently, it would output the token

<YALID, (LE P P){LE P P)>,

Since the last node in the network would receive only this one token, it would add the
instantiation of EX1 to the conflict set only once.

3.1.4 Synchronizing the Divided Two-input Nodes

The separate memory nodes were not described in the last chapter because their use
makes the algorithm sensitive to the order in which nodes are executed. This sensitivity
presents little problem for a uniprocessor implementation like OPS2, but it would complicate
the design of a parallel interpreter. To see an example of the problem, consider production
MB18 again.

MB18 ((Hant (EmptyHanded Monkey)) (Monkey Holds =X)
-
(<WRITE> "The monkey drops the" =X)
(<DELETE> (Want (EmptyHanded Monkey)))
(<DELETE> (Monkey Holds =X)))

The OPS2 compiler would translate MB18’s LHS into:

Distribute descriptions of
working memory changes.

Is the element
a list of two subeloments?

Is the first subelement
Want?

18 the second subelement

69

Is the element
» list of three subclements?

Is the first subelemer?
Monkey?

Is the second zubelement

a list of two subelements? Holds?
Is the first subelement

of the second subelement
EmptyHanded?

1s the second subelement
of the second subelement
Monkey? l’

v
Update the memory. Update the memory.

Join the tokens.

Report that production
MB18 is satisfied.

Suppose (Want (EmptyHanded Monkey)) and (Monkey Holds Ladder) entered an
empty working memory at the same time, and suppose the match processed both these
changes in parallel. If both the tckens reach the two-input node simultaneously, the order in
which the tokens are processed will determine what is output by the node. If the two-input
node accepts the token from the left first, it may produce two output tokens. When it

processes
<VALID, (Want (EmptyHanded Monkey))>

it will check its right memory and find the data part of

<VALID, (Monkey Holds Ladder)>,

The data part will be there because, if the memory node used the order of processing
decided upon in the last section, it wouid have modified its memory before sending the token
to the right input of a node. Since ii finds the data part in the right memory, the two-input
node will build and output the token

<VALIB, (Want (EmptyHanded Monkey))(Monkey Holds Ladder)>,

70

After the two-input node halts, two things happen in paraliel. The two-input node will accept
the other token, and the memory node on the left branch of the network will modify its
memory. If the left memory is modified before the two-input node reads it, the two-input
node will find there the data part of

<VALID, (Want (EmptyHanded Monkey))>,

This will cause the two-input node to again output the token

<VALID, (Want (EmptyHanded Monkey))(Monkey Holds Ladder)>,

Since there OPS2 interpreter executes serially, it is not difficult to order the processing of
nodes in such a way that this problem is avoided. (See section 3.4.1.) If parallel execution
were used, however, explicit synchronization of the nodes would be necessary.

3.2 A Third Action Type

A second difference between the aigorithm in the iast chapter and the OP32 algorithm is
that the OPS2 algorithm supports three action types rather than two. In addition to the add
(which adds one element te working memory) and the delete (which removes one element
from working memory), the OPS2 interpreter supports an action called reassert. Like the
delete action, the reassert is performed only on elements that are present in working memory
at the time the RHS is executed. Reasserting an existing element is defined to be equivalent
to deleting the element and then adding an identical element. The monitor couid convert the
reassert into the two actions internally, and then the match could process them using the
methods described in the last chapter. But if the nodes are given the ability to handle more

tcken types, the reasseri can be processed directly. This allows processing one action t0

give the effect of processing two.

3.2.1 A Third Tag

The processing of the third action is consistent in form with the processing of the other
two actions. The processing begins with the creation of a token whose data part hoids the
reasserted element and whose tag indicates that the action was a reassert. This tag is
OLD-VALID. The token is sent out along the edges leaving the bus node of the network, and
the nodes it reaches are activated to perform some processing. This section describes the

processing performed by the nodes.

First the overall effect must be considered. Since a reassert is defined to be equivalent to

71

a delete followed by an add, the contents of working memory are unchanged. If working
memory is unchanged, the node memories should be also. The conflict set is changed only in
that the effects of previous applications of conflict resolution rules must be modified.
Instantiations containing the reasserted element must be reevaluated under the recency
criteria since the recency of the element has changed. If any instantiations containing the
element are marked as having been fired (and thus ineligible to fire again under the OPS2
conflict resolution rules) the mark must be removed. The question to be answered in this
section, then, is how the nodes in the network can process a reassert and change nothing but

the conflict set.

The cne-input nodes should treat tokens with the new tag exactly like the other tokens.
Since they do not consider the other two tags, they should not consider this one.

Since the memories in the network are supposed to remain unchanged when a reassert is
processed, the memory nodes shouid do nothing more than pass the OLD-VALID tokens on to

their successors.

The two-input nodes excluding the <NOT> nodes must treat OLD-VALID tokens like the
other tokens. Thev must build new data parts as they did in processing the other tokens,
because the routines that maintain the conflict set must receive the complete data parts of
the instantiations if they are to know what to change. If a two-input node builds a token to
.. : during the processing of an OLD-VALID tcken, it must be the case that another token
W' - dentical data part was produced earlier (when the last of the data elements involved
en . . working memory). Thus the tokens built while processing a reassert must be given
the tag that will izave the memories below unchanged: OLD-VALID.

When a <NOT> node receives a token tagged OLD-VALID on its left input, it must not
change its internal memory because all memories in the network, whether they are contained
in <NOT> nodes or memory nodes, must remain unchanged. In deciding whether to pass the
token on to its successcrs, it must ignore the tag just as the one-input nodes do. It must
compare the data part of the token to the elements stored in its right memory to determine
how many allow consistent variable bindings, and if the number is zero, it must send the

token {(unchanged) to its successors.

A <NOT> node cannot produce an output while processing an OLD-VALID token that arrives
from the right. If the token has that tag, the data part of the token is necessarily already
stored in the right memory. Hence every element in the left memory that allows consistent
variable bindings has a count of at least one. Since processing the reassert cannot lower the

counts, no tokens can be output.

72

Some details of the OPS2 conflict set must be explained before the processing of
OLO-VALID tokens can be described. The conflict set in OPS2 is an ordered list of the
instantiations that have not yet been executed. Instantiations are removed from the set when
they are executed because the OPS2 conflict resolution rules specify that an instantiation
may not execute twice. The order of the list is the order of dominance under the other
conflict resolution rules; each instantiation dominates all those later in the list. The routines
that maintain the conflict set preserve the order of the elements when making changes to the
set. When they receive an instantiation that resulted from the processing of a reassert, the
routines must perform two operations to keep the set in correct order. First, they must
remove any identical instantiations because, with the recency of one of the data elements just
changed, the old position of the instantiation is probably no longer correct. (Of course, if the
instantiation had executed, it would no longer be in the set.) Then they must place the new
instantiation into the conflict set at the appropriate position.

3.2.2 Inverting Tags at <NOT> Nodes

The <NOT> nodes described in the last chapter sometimes had to invert tags. The arrival
on the right of a VALID token resulted in sending out INVALID tokens; the arrival on the right
of an INVALID token resulted in sending out VALID tokens. The <NOT> nodes in OPS2 must
invert tags also. It might appear that the existence of a third tag would complicate the
process of inversion, but the third tag actually has no effect on the process. Recall that the
arrival on the right input of a token tagged OLD-VALID cannot cause any outputis to be
produced. Hence there is no need to invert this tag. Neither of the cther tags ever becomes
CLD-VALID because the arguments regarding changing VALID tags to INVALID and INVALID
tags to VALID still apply. If a token tagged VALID arrives on the right and causes the count
of some element in the left memory to change from zero to one, then the token produced
should be tagged INVALID. Since the element had a count of zero, it must have been stored
in the memories below this node at some earlier time. The INVALID token is needed to cause
the memory nodes to remove the element. Similarly, it a token tagged INVALID arrives and
causes a count to change from one to zero, the token produced should be taggea VALID. If
the element had a count of one, it could not be in the memories below this node. The VALID
tag is needed to cause the memory nodes to store the element.

3.2.3 OLD-VALID Tokens and Shared Memories

The two changes made to the basic algerithm in developing the OPS2 algorithm interact to
produce an unfortunate effect: the nodes in the network sometimes produce more output
{ckens than they should. To see the effect, consider the network for EX1 again.

73

Distribute descriptions of
working memory changes.

Is the element
a list of three subelements?

Is the first subelement
LE?

Update the memory.
Join those tokens that
allow =X and =Y to be bound

consistently.

Report that production
EX1 is satisfied.

Suppose that the data element (LE P P) was reasserted. When the token
<0OLD-VALID, (LE P P)>

reached the left input of the two-input node, the node would examine its right memory, find
(LE P P) there (because the data element was added to working memory on an earlier

cycle), and produce the following output ioken.

<0OLD-VALID, (LE P P){LE P P)>

Whan

<0LD~VALID, (LE P P)>

reached the right input of the two-input node, the node would examine its left memory and
again output the two-element token.

<CLD-VALID, (LE P P)(LE P P)>

This muitiplying of tokens could be eliminated if the memory nodes deleted the data part
from their memories before sending the token to the left inputs of the following nodes and
then replaced it before sending the token to the right inputs of the following nodes. But the
decision was made that the memory nodes should not engage in this extra activity. Making
these extra changes to the node memories would slow the interpreter, and the extra tokens
can be dealt with more easily at the node that changes the conflict set. (Since the node
memories are not affected by the processing of OLD-VALID tokens, the only potential effect

74

of the extra tokens would be changes in the conflict set.)

3.3 The Interpreter’s Data Formats

s section doscribes the form of the two kinds of data processed by the OPS2

interpreter: tokens and nodes.

-

3.3.1 The Token Format

Tokens in OPS2 are lists. The first eiement of the list is the tag of the token, and the

remaining elements are pointers to data elements. The token

<VALID, (Want (EmptyHanded Monkey))>

is represented in OPS2

(VALID (Want (EmptyHanded Monkey))),

The data parts of the tokens are in reverse order. The token

<VALID, ¢Want (EmptyHanded Monkey))(Monkey Holds Ladder)>

is represented
(VALID (Monkey Holds Ladder)(Want (EmptyHanded Monkey))),

The data paris of the tokens are built backwards because this minimizes the amount of

space consumed by the tokens. Consider the following data part.

((Bananas Near (8 2))(High Bananas)(Want {Monkey Holds Bananas)))

As stored in Lisp1 this data part extends over fifteen words of memory. To store the top
level list (the data part itself) requires three words. To store the first data element requires
five words; to store the second, two words; and to store the third, five words. The space
cost of sioring this token, however, is much less; even if the token were not siored, fourteen
of the fifteen words would still be needed for other purposes. The data elements must be
stored in working memory. (The data part holds not copies of the elements, but pointers

150 the manual for Lisp 1.6 [41], the version of Lisp in which OPS2 is implemented.

75

back to the appropriate slots in working memory.) Two of the remaining three words are
used in other tokens. Since the OPS2 compiler arranges the two-input nodes in a linear
sequence, joined by their left inputs, the data part

((Bananas Near (8 2))(High Bananas)(Hant (Monkey Holds Bananac)))

could not be in a node memory unless the data part

((High Bananas)(Want (Monkey Holds Bananas)))

were in the left memory of the node that built the longer tckan. This twe-element data part,
in turn, could not be in that memory unless

({Monkey Holds Bananas))

were stored in an earlier memory. Since Lisp allows lists to share common taiis, the 0PS2
interpreter can use the entire two-element data part as *he tail of the three-element data
part; and it can use the one-element data part as the tail of the two-element data part. As a
result of the sharing, the three data parts consume a total of only three words of storage.
Since this sharing of tails is used throughout the network, every token stored consumes only

one word, regardless of its length.

3.3.2 The Node Formats -- Preliminaries

A node in OPS2 is a list of from two to six elements. The positions in the list are called
fields. The contents of the first field indicate the function to be performed -- whether the
node is to test the length of sube'ements, to test for the occurrence of a constant, to test
variable bindings, or to perform one of about six other functions. The other fields hold
pointers to other nodes, constants, and the other information needed by the node program to

perform its function.

The OPS2 interpreter has gone through many revisions, and the contents of these fields
have changed on occasion. In general, this chapter describes the version of OPS2 that is
measured in Chapter 5. One exception is the field that indicates which subelement to test. In
that version of the interpreter, the field holds a pointer into a table. Since this pointer would
carry little information here, the fields are shown holding a simplified version of what was
used in an earlier OPS2 interpreter: lists called index vectors. The first element of an index
vector contained infcrnistion that was relevant only to the variabie-binding nodes. The rest
of the list contained integers that pointed tc subelements of the tokens® data parts. Encoded
in the list of integers was an indication of whether to test the subeiement or the sublist

76

beginning with that subelement. These examples will suppress some of the details. It will
always be assumed that the subelement and nct the list beginning with the subelement is
tested, and the encoding of the distinction will not be shown. The encoding of the variable
information will be shown only for the variable-binding nodes. At the nodes that do not test
variables, the list £1) means test the entirety of the data element. The index is 1 to indicate
the first data element of the data part -- indices greater than 1, of course, are needed only
after two-input nodes build longer data parts. The hst (1 3) means test the third
subelement of the data element. The list (1 3 2) means test the second subelement of the

third subelement: of the data element.

The version of OPS2 measured in Chapter 5 does not differ greatly in how it handles index
vectors. The index vectors are stored in a table, and the nodes hold pointers into this table.

This allows the nodes to share index vectors.

3.3.3 The One-input Nodes

Four of the one-input nodes contain only four fields. These are the &LEN, &LEN+, &ATOM,
and &VIN nodes, which are described .in this subsection.

The &LEN node tests the lengths of data elements and subelements. The first field in one
of these nodes contains the type of the node (&LEN). The second field contains the list of
successors of the node. The third field contains an index vector; and the fourth contains an

integer constant. The node

Is the second subelement
a list of three subelements?

is encoded in OPS2

(BLEN (, .) (1 2) 3),

The ellipsis represents the pointers to the successors of the node.

The &LEN+ node is like the &LEN node except that it allows subelements whose lengths are
equal to or greater than the integer constant. It performs the length test for condition
elements that contain the OPS2 segment character (1). The node

Is the element
a list of one or more
subelements?

77

which would be needed for the condition element (WHant | =) is encoded in OPS2
(BLEN+ (, ., ,) (1) 1),

The &ATOM node tests for the occurrence of = narticular constant. The node

Is the first subelement
Want?

is.encoded

(8ATOM (, .,) (1 1) Want),

The &VIN node tests variables that occur more than once in a condition element. Its name
was chosen to indicate that it tesis variables that are internal to a condition element. The

node

Is the first subelement
equal to
the third sukelement?

is encoded

(8VIN (., . . (VARIABLE 1 1) (VARTABLE i 3)).

This node shows the encoding of variables when both are ordinary variables ("=" variab’es).
The condition element (#X =X) compiles inio the &VIN node

(8VIN (. . ,) (NOTVARIABLE 1 1) (VARIABLE 1 2)),

3.3.4 Usear Defined Match Predicates

Instances of user defined match predicates compile into one-input nodes containing five
fields. The first field holds the type of the node, &USER. The second field holds the list of
successors of the node. The third field holds the index vector. The fourth field holds the
name of the user defined predicate, and the fifth field holds the list of arguments to the
predicate. Production MB14, which contains the user defined predicate <NOTANY>, is an
example of a production that needs the &USER node.

78

MB14 ((Hant (Monkey On Floor))
(Monkey On =0 & (<NOTANY> Floor))
-
(<NRITE> "The monkey jumps off of the" =0)
(<DELETE> (Want (Monkey On Floor)))
(<DELETE> {Monkey On =0))
(Monkey On Floor))

The &USER node or this production is

(SUSER (, . .) (1 3) <NOTANY> (Floor)),

3.3.5 The Memory Node

“he memory node contains four fields. The first field, as always, holds the type of the
node, &MEM. The second and third fields both hold lists of successors of the node. Recall)
that a2 memory node must distinguish the successors for which it plays the role of left
memory from the ones for which it plays the role of right memory. It does sc by having one
field for what could be called the "left successors™ and one for the "right successors.” The
last field holds a list of one element. That element is the memory of the node. Since OPS2
memories are simply lists of data parts, a memory node with an emnty memory is

(GMEM (. .) (. .) (O,

3.3.6 The &TWO Node

Although the left memory of a <NOT> node is internal, the left input of the node cannot
come directly from the preceding one-input or two-input node. All the two-input nodes
require that their immediate predecessors distinguish between left and right successors.
Since the one- and two-input ncdes do not make this distinction, they cannot be immediate
predecessors of <NOT> nodes. Memory nodes could precede the <NOT> ncdes, but it would
be wasteful to put in a memory node just for this purpose. In OPS2 a node type has been
- defined that has no purpose but to disiinguish its left and right successors. These nodes
have three fields, one for the type of the node (& TWO) and two for the successors of the
node. They are like & MEM nodes without memories:

(&THO (. [] .) (. L] .)).

79

3.3.7 The Ordinary Two-input Node

The two-input nodes excluding the <NOT> nodes have six fields. The first field holds the
type of the node, &VEX. (This name was chosen to indicate that the node tests variables
which are exiernsliy bound.) The second fieid holds the iist of successors of the node. The
third and fourth fields hold pointers to the two predecessors of the node. These pointers are
needed because the predecessors contain the memories read by the &VEX node. The fifth
and sixth fields are lists of index vectors. Each variable checked by the node has one index
vector in each list. The vectors in the fifth field point to subelements in the data from the
left. The vectors in the sixth field point to a subelements in the data from the right. The
production MB15

MB15 ((Hant (Monkey On =0)) (=D Near =X)
-

(Want (Monkey Near =X)))

has one variable common to both condition elements. Its &VEX node therefore has only one

test to perform.

(BVEX (¢, +»)C o+ C o JDCYARIABLE i 2 3)){(VARIABLE & 1)))

3.3.8 The &NOT Node

The <NOT> nodes contain <i: fields, most of which have the same purpose as the
corresponding fields in the other two-input nodes. The first fieid hoids the.type of the node,
&NOT. The second field holds the list of successors of the node. The third field holds a
pointer to the right memory of the node. The fourth field holds the left memory of the node
(not a pointer to the memory). This field is identical to the fourth field of the &MEM node.
The fifth and sixth fields hold lists of index vectors like the lists in the &VEX node. The

production MB19

MB19 ((Hant (EmptyHanded =X)) - (=X Holds =)
-

(<DELETE> (Want (EmptyHanded =X)>))

has one &NOT node in its network.

(&NOT (. .) (. .) CO) ((VARIABLE 1 2 2)) (VARIABLE 1 1)))»

3.3.9 The &P Node

The nodes that report changes to the confiict set are the &P nodes. (This name was
chosen to indicate that the node is the representative of the production.) These nodes have
five fields. The first field holds the type of the node. The next three fields hold integers
that are used in conflict resolution: a count of the number of condition elements in the LHS, a
count of the number of constants in the LHS, and the ordinal numbe~ of the production (the
ordinal number is one greater than the number of productions ccmpiled prior to this one).
The fifth field holds the name of the production. If MBl

MB1 ((Want (Monkey Holds =W)) (High =) (=W Near =B)
-=>

(Want (Ladder Near =P)))

is the first production to be compiled, its &P node is

(8P 3 5 1 MB1),

3.3.10 The &BUS Node

The first node in the network (the root of the entire network) has only two fields. The
first holds the type of the node, &BUS. The second holds the list of successors of the node.

@Bus (. ,)

3.3.11 An Example Network

The network for MB5 contains examples of every node type except &VIN, &LEN+, and
&USER.

MBS ((Want {Monkey Holds =W)) = (High =W) (=W Near =P)

-

{Want (Monkey Near =P)))

When the node memories are empty, the network is

81

(&BUS ()
/)
£
@LEN GV (1 2) (:Lsymm)
(;T’w/(m 1) Want) (@ATOM (1) (1 1) High) (&ATOM (})u 2) Near)

(&LEN () (i 2))

(%ATOM () (1 2 1) Monkey)
aw) (1 2 2) Hods)

(&TWO (4,) () @&MEM () () (OO0
(&NOT () (/) () ((VARIABLE 1 2 3)) ((NOTVARIABLE 1 2)))

L &MEM () () (O) &MEM () () (O
gl

) .
(&VEX () (/) (\) ((VARIABLE 1 2 3)) ((VARIABLE I 1))

(&P 35 5 M35)

3.4 Thz Interpreter for the Nodes

The nodes in an OPS2 network can be considered instructions for an OPS2 machine. Just

as a conventional computer interprets instructions like

MOVI RS, O
ADD R1, R2

the OPS2 machine interprets instructions like

(8P 2 5 18 MB18)
(&VIN (, . .) (VARIABLE 1 3) (NOTVARIABLE 1 4)),

Although the instructions for the conventional computer are stored as bit vectors and the
nodes for the OPS2 machine are stored as lists, they contain cimilar information. The hame in
the node’s type field corresponds to the contents of the op-code field in a conventional
instruction. The successor field is similar in function to the next-instruction field in the oid
fcur-address computers. The other ficlds are used like the data fields of immediate

instructions.

The present OPS2 machine comprises an interpreter written in Lisp and a KL version of a
PDP-10 computer on which the OPS2 interpreter is run. It functions much like a
microprogrammed interpreter for a conventional architecture, with the PDP-10 playing the

82

role of the microprogrammable hardware, and the Lisp program playing the role of the
microcode. The OPS2 interpreter fetches a node as the microprogrammed interpreter fetches
an instruction. It examines the name field and branches to the appropriate subroutine as the
other decodes the op-code field and branches to the appropriate microsubroutine. The
following sections explain how this inierpreter functions; they explain how it chooses which
node to process when several are pending, they describe the subroutines for the various
node types, and they explain how data is passed to the subroutines.

3.4.1 Control in the OPS2 Match

Since the OPS2 match is impiemented on a uniprocessor, there is always only one active
locus of control in the match. The interpreter follows three rules in choosing how to move
the locus. First, it processes only cne working memory change at a time. If three actions are
performed on a cycle, the match is performed three times. Second, the interpreter selects
the nodes to be executed in a depth-first manner. After executing one node, it executes 2l
that ncde’s descendants before executing any other nodes. Third, when a node sends out a
token before it has finished processing, the interpreter suspends that node until all its
successors have finished :.r.-.zssing the token. When a memory node sends a token to its
left successors, for exam -+ . it muest wait until they tinish processing before it can modify its
memory and send the toker *o its right successors. As a result of the third rule; if a node
produces more than one output token, each token is processed by all the node’s successors

before the processing of the next begins -- before, in fact, the inext can be built.

These rules are easy to impiement in a ianguage supporting recursion, but that is not the
reason they were chosen. They were chosen to avoid the potential problems of shared
memories (see section 3.1.4). If these rules are followed, changes are made to memories one
2t a time, and every node below a memory is allowed to process the change before that
memory -- or any other -- can be further medified. These rules, combined with the
distinction between left and right successors made by the memory nodes, are sutficient to

prevent the probiems.

3.4.2 The One-input Nodes

The processing performed by the one-input nodes in an OPS2 network is similar to that
performed by the one-input nodes in Chapter 2. The program shown here is diiferent only
because the information contained in the OPS2 nodes has been described in more detail.

Since the programs for &LEN, &LEN+, and &ATOM are identical except for the tests
performed, only the program for &LEN is shown here.

1. Using the index vector, extract the subelement to be
tested from the data part of the token.

2. Test uwhether the length of the subelement is equal

to the constant parameter of the node.

3. If the test succeeded, send the token to the successors.

4. Halt.

3.4.3 The &VIN Node

The node program for &VIN differs from the corresponding program in Chapter 2
principally in that the &VIN program shows how the node choses which test to apply. Since
OPS2 has four variable types, ihe node chooses from four possibilities, testing for equalitv,
testing for inequality, testing for the first’s being less than the second, and testing for the

first’s being greater than the second.

i. Using the first index vector, cxtract the first subelement
from the data part of the token.

2. Using the second index vector, extract the second
subelement from the data part of the token.

3. Using the variabie-type part of both index vectors, choose
the test to perfoirm.

4, Perform the test.

5. 1f the test succeeded send the token to the successers.

S. Lt

4.4.4 The &MEM Node

The &MEM node does not occur in the networks described in Chapter 2.

1. Send the token to the left successors.

2. If the token is tagged "VALID", store the data part
in the node memory; otheruwise if it is tagged "INVALID",
find and delete an identical data part.

3. Send the token to the right successors.

4, Halt.

3.45 The &TWO Node
The &TWO node is also new to the OPS2 algorithm.

1. Send the token to the left successors.
2. Send the token to the right successors.

84

3. Halt.

3.4.6 The &VEX Node

The ordinary two-input nodes diifer from the ones in Chaoter 2 only in not containing
memories. No change in the node program was needed to accommodate the third tag.

When an &VEX node receives a token from the left, it performs the following processing.

1. Foreach data part in the right memory

Begin

2. Set FAIL = 8.

3. Foreach variable to test until FAIL =1
Begin
4. Use the first index vector to extract a
subelement from the ieft data part.
5. Use the second index vector to extract a
subelement from the right data part.
B. Using the variable type part of both
index vectors, choose which test to perform.
7. Perform the test.
8. If the test failed, set FAIL = 1.
End

9. If FAIL = 8,
Begin
18. Set D = the data part of the tcken
from the left concatenated with the data
part of the token from the right.
11. Build a token using D and the tag part
of the token that just arrived.
12. Send the neu token to the successors.

. End
End

13. Halt.

When the node receives a token from the right, it does the following

1. Foreach data part in the left memory

Begin

2. S=t FAIL = 8.

3. Foreach variable to test until FAIL =1
Begin
4, Use the first index vector to extract a
subelement from the left data part.
S. Use the second index vector to exiract a
subelement from the right data part.
6. Using the variable type part of both

index vectors, choose which test to perform.
7. Perform the test.
8. If the test failed, set FAIL = 1.
End

9. I+ FAIL = 8,
Begin
18. Set D = the data part of the token
from the left concatenated with the data
part of the token from the right.
11, Build a token using D and the tag part
of the token that just arrived.
12. Send the nen token to the successors.
End

End

13. Halt.

3.4.7 The &NOT Nede

The &NOT nodes differ from the <NOT> nodes of Chanter 2 in two ways. An &NCT contains
one internal memory rather than two, and it understands three rather than two tag types.

When a token arrives from the left, an &NOT node performs the following steps.

. Set COUNT = B,
Forcach data part in the right memory
Begin
3. Set FAIL = @.
4. Foreach variable to test until FAIL =1
Begin
S. Use the first index vector to extract a
subelement from the left data part.
6. Use the second index vector to extract a
subelement from the right data part.
7. Using the variable type part of both
index vectors, choose uhich test to performn.
8. Perform the test.
9. If the test failed, set FAIL = 1.
End
18. 1# FAIL = B, set COUNT = COUNT + 1.
End
11, If the token that just arrived is tagged "VALID", store
COUNT and the data part in the left memory; otheruise if the
token is tagged "INVALID", delete an identical data part and
its count.
12. 1f COUNT = 8, send the token thet just arrivad to the
successors.
13. Halt.

86

When an &NOT node receives a token from the right, it performs the following steps.

1. If the token is tagged "OLD-VALID", halt.
2. 1f the token is tagged "VALID", set INC = 1; otheruise

set INC = -1.
3. Foreach data part in the left memory
Begin

4, Set NEUCOUNT = the count stored uith the data part.
5. Set FAIL = 8.
6. Foreach variable to test until FAIL =1
Begin
7. Use the first tndex vector to extract a
subelement from the left data part.
8. Use the second index vector to extract a
subelement from the right data part.
3. Using the variable type part of both
index vectors, choose uhich test ‘o perform.
18. Perform the test.
11. 1f the test failed, set FAIL = 1.
End
. 11. If FAIL = @&,
Begin
12. Set NEWCOUNT = NEWCOUNT + INC.
13. Repiace the count in the left memory with
NEWCOUNT.
14, If (NEWCOUNT = B8 and INC = -1)
or (NEWCOUNT = 1 and INC = 1),
Begin
15, If INC = -1, set TAG = "VALID";
otheruise set TAG = "INVALID".
iB. Buiid a3 token using TAG and the
data part from the left.
17. Send the neu token to the successors.
End
End
End
18. Halt.

3.4.8 The &BUS Node
The &BUS node for OPS2 differs from the bus node in Chapter 2 only in being able to

generate three tags rather than two.

1. 1f the working memory change was a delete, set TAG = "INVALID";
otheruise, if it was an add, set TAG = "VALID";

otheruise, set TAG = "OLD-VALID".

Z. Build a token using TAG and the affected data element.

87

3. Send the token to the successors.
4, Halt.

3.4.9 The &P Node

This node differs significantly from the corresponding node in Chapter 2. When the OPS2
" interpreter adds a new instantiation to the conflict set, it maintains the order of the cor*®lict
set by inserting the instantiation an appropriate distance from the beginning of the set.

1. Locate and remove an identical instantiation from the
conflict set, if one exists.
2. 1f the token was tagged "INVALID", halt.
3. Locate the first instantiation in the set that is dominated
- by the new instantiation.
4, Insert the neu instantiation at this point.
5. Hailt.

3.4.10 Passing Information to the Node Programs

The node programs must be passed three pieces of information before they can begin
execution: the description of the node to be interpreted, the token to be tested, and (only
the two-input nodes) an indication of whether it was called by its left predecessor or its right
predecessor. This section explains how this information is passed o the compiled Lisp

functions that serve as node programs.

The description of the node is passed using the function-calling mechanism of Lisp. The
names of the various node programs are the names that appear in the first fields of the
nodes. When the Lisp function APPLY is called with that name and the rest of the node as its
arguments, it locates the node program, binds the values appearing in the other fields to local
variables of the node program, and then passes control to the program.

The token and the indication of which predecessor called the node are passed in globa!
variables. The OPS2 interpreter contains a function that keeps track cf all the pending nodes
plus the information to be passed to them. Each time one node finishes execution, this
function chooses another node, binds the token and the identity of the predecessor to the
two global variables, and then calls APPLY to pass con'rol to the node program.

4. Analysis of the OPS2 Algorithm

In this chapter an analysis of the OPS2 match algorithm is performed in order to determine
how the time and space costs of the algorithm depend upon the number of productions in
production memory and the number of data elements in working memory. The analysis
determines only the general forms of the dependencies. For example, it shows that, in the
best case, the time cost is logarithmic function of the number of productions, but it does not
try to determine the cost more precisely than that. The next chapter contains the results of
experiments that determined the precise time and space costs for three typical production

systems.

In addition to the usual best and worst case effects, this analysis determines the expected
effects of production system size. The exnected cost analyses assume the production
systems are written in the style of the Instructable Production System group [49, 46] This
group is attempting to build production systems much larger than those in use today, and its
efforts have included developing programming techniques that are appropriate for these

large systems.

4.1 Best and Worst Case Effects

This section contains a conventional, though informal analysis of the algorithm. The first
six subsections below describe the best and worst case effects of production memory size on
(1) the number of nodes ih the netwerk, (2) the amount of space required to store tokens,
and (3) the time required to update the conflict set after each working memory change. The
next four subsections describe the best and worst case effects of working memory size on
(1) the amount of space required to store tokens, and (2) the time required to update the
. conflict set. The size of working memory does not affect the number of nodes in the

network, of course.

All the bouads derived here are sharp. At least one production system is described that

reaches each bound.

4.1.1 The Worst Case Effact of PM Size 91 Network Size

In the worst case the number of nodes in the network wiil grow linearly with the number
of productions in production memory. Each LHS compiles into one &P node, a few one-input
nodes for each condition element, and if the LHS contains more than one condition element, a
few memory and two-input nodes. Consider the set of nodes needed to perform the match
for production Pj. Let Nj be the size of this set. The number of nodes added to the network
is usually somewhat less than Nj, because some of the nodes will be in the network before

90

the LHS is compiled. In no case is the number of nodes added greater than Nj. The total
number of nodes in the network is thus bounded by the sum over =4 productions, Px, of Nx.
A production system that achi 'z this linear bound will be shown in the next subsection.

4.1.2 The Best Case Effect of PM Size on Network Size

Even in the best case the number of nodes in the network is a linear function of the
number of productions in production memory. The network grows most siowly when every
LHS ccmpiled is identical to a previously compiled LHS. In this case no nodes are added to
the network except &P nodes. But since every production adds one &P node to the network,
the rate of growth is linear -- one node per production.

Since production systems do not typically grow in this fashion, however, it is worthwhile to
consider what happens when productions with distinct LHSs are added to production memory.
Since distinct LHSs will necessarily sometimes match different data, their &P nodes cannot be
sons of the same node. (Certainly the &P nodes can have common ancestors; the restriction
is simply that they cannot be the immediate successors of the same node.) Consequently, if
LHSs are distinct, there must be linear growth in the network somewhere in addition to the
&P nodes.

The growth does not have to occur in the same part of the network for every production
system. If all the LHSs except a constant subset have only one condition element, the number
of two-input and memory nodes will remain constant while the number of one-input nodes
grows (at a linear rate). If all but a constant subset h=ve more than one condition element,
the number of one-input nodes can remain constant while the number of two-input nodes
grows. If neither of these is true, then both the one-input nodes and the two-input nodes

must grow in number.

Whether the number of memcry nodes grows depends upon which of the other two classes
of nodes experiences growth. If the number of two-input nodes remains constant, the
number of memory nodes must also. If both the one-input and two-input nodes grow in
number, then the memory nodes, located between the twe, must grow similarly. Finally, since
many two-input nodes can share the same one-input node, it might appear that it would be
possible for the number of two-input rodes to grow while the number of one-input and
memory nodes remained constant. If the number of two-input nodes is to grow indefinitely,
however, it is not. Starting with some set of memory nodes, one can define many LHSs by
choosing pairs of memory nodes and joining them with a two-input node. But the number of
LHSs that can be defined this way is finite; eventually one will find that every possibie
two-input node is already in the network. To define mocre LHSs, it will be necessary to add

91

two-input nodes above those already in the network -- in effect defining LHSs with three
condition elements. Adding these nodes requires that memory nodes be added to the
network above the existing two-input nodes. Thus memory nodes must be added, albeit
perhaps slowly compared to the rate at which two-input nodes are added.!

To show that these bounds are sharp (that is, attainable) it is necessary to construct a
production system that attains the bounds. It is difficult to construct one inat uses only a
fixed number of one-input nodes, but easy to construct one that uses a fixed number of
two-input nodes. An example of such a production system is a Turing Machine simulator in
which the infinite tape is stored in productions, one production for each tape cell. A tape cell
production needs only one condition element in its LHS. If cell 18 held a zero, for example:

Cell18 ((Read 18) --> (Cell 18 0) (<DELETE> (Read 18))),

Because all but a finite number of the tape cells wiil be blank at any tims, it is necessary to

include a default production for the blank cells:

DEFAULT ((Read =X)

-

(Cell =X Blank) (<DELETE> (Read =X))),

The finite state control could also be encoded in productions. The following production, for
example, would fire when the machine read a zero in state S1. It would change the state to
S3, write 8 onto the tape cell, and then move the head to the right.

Q0s1 { ¢Cell =C 0) (State S1)
--d
(<DELETE> (Cell =C 0)(State S1))
(State S3) (Read (<+1> =C))
(<BUILD> ({Read =C) =--> (Cell =C %))))

The <BUILD> action writes over the previous contents of the current tape cell by adding a
new production that responds to requests to read the cell. Since conflict resoiution will
choose this new produciion in preference to all older productions with identical LHSs, there is
no need to delete the old productions for the cell. The action (Read (<+1> =C)) causes the
head to move to the right; it adds one to the number of the current cell and deposits into

working memory a request for the contents of that tape cell.

lan constructions attempted by this writer have rosulted in linear or near-iinear growth of the number of memory
nodes, byt no proof has been found that these constructions are optimal.

92

When execution of the Turing Machine begins, production memory contains the default
production, the state transition productions, and the cell productions for a finite portion of
the tape. No productions are added to the finite state contro! during execution, but the
number of tape cell productions grows unboundedly. Since the tape cell productions have
singie condition elements in their LHSs, this results in adding oniy &P and one-input nodes to

the network.

4.1.3 The Worst Case Effect of PM Size on Token Memory

In analyzing the effects of production memory size on time costs, it is necessary to assume
that all the prdductions require comparable amounts of effort to instantiate. The effort
required to instantiate the LHSs is relevant because the expenditure of unusually high
amounts of effort often +esults in building a large number of tokens. The assumption of
comparable compiexity can be made because the effects of complexity are explored in the
section on working memory size. ‘

With this assumption, the number of tokens stored in the network is at worst a linear
function of the number of productions. Section 4.1.1 showed that the number of memory
nodes in the network grows at worst linearly with the number of productions. The
assumption that the LHSs are comparably complex guarantees that none of the memories will
contain an extraordinarily large number of tokens.

It must still be shown that this bound is sharp, for it could be that most of the memories
are empty at any given time, and that adding new memories only adds new empty memories.
One way to build a production system reaching the bound is to use negated condition
elements. The production system might ' ave - .S condition elements in every production. All
the productions would have the same first condition element. Each would have a different
second condition element, and all the second elements would be negated. The network for
such a production system has one &NOT node for each production. Since all the productions
have the same first condition element, the left inputs of the &NOT nodes all come from the
same source. f these were &VEX nodes, there would be only one memory for ali the left
inputs, but since they are &NOT, each has its own memory. With these private memories in
the network, the entry into working memory of an element matching the first condition
element results in one token being stored for every production in the system.

Since this example relies on &NOT nodes and the fact that they do not share memories, it is
interesting to ask whether the same bound can be reached in a production system containing
no negated condition elements. Since &VEX nodes always share memories when possible, in
the network for such a production system, two memories never take their inputs from the

93

same source. Thus copies of the same token can be stored in two different memories only if
the token was passed by two different sets of nodes -- or equivalently, if the data part of
the token conformed to two different descriptions. It is not difficult for the data to do thié;
conditiocn elements are templates describing some, but usually not all, of the features of the
data they match. Since the data elements -- or at least the part of the data elemerits that
the condition elements describe -- are not infinite, however, only a finite number of features
can be chosen to describe the elements. These features can be combined in various ways tc
generate different partial descriptions, but only finitely many combinations are possible. This
. argument also applies to the memories holding pairs and longer n-tuples of elements; the
n-tuples also have finite limits on the number of partial descriptions to which they conform.
If the data part of a token can be described in only a limited number of ways, then there is
necessarily a limit to the number of different node memcries holding the token. The worst
case upper bound musi therefore be a constant; production memory can grow arbitrarily
large, but after every data element appears in its maximum number of memories, the number

of tokens stored will not grow.

Two poinis about this bound should be noted. First, it requires the assumption that there
are no &NOT nodes in the retwork. The true worst case bound is the linear bound achieved
by considering the &NOT nodes. Second, the constant bound is extrememly large. A data
element of K subelements can be described in 2K different ways just by choosing different
subsets of constants. With length tests, variables, and user defined predicates, the number of
distinct descriptions can be increased greatly. N-tuples of elements can be described in
many more ways. It is unlikely that any production system could grow large enough to reach
the constant bound.

4.1.4 The Best Case Effect of PM Size on Token Memory

In the best case, production memory can grow without adding to the number of tokens
stored. The Turing Machine production system grew indefinitely while adding no memory
nodes to the network. When the number of memories does not grow, the number of tokens

stored does not grow either.

4.1.5 The Worst Case Efiect of PM Size on Time

The worst case time cost, like the two worst case space costs, is a linear function of the
size of production memory. Since the only possible interaction between LHSs is beneficial --
a reduction in the effort resulting from shared nodes -- the bound cannot be worse than
linear. To see that the linear bound is sharp, look at the Turing Machine production system
or the production system in section 4.1.3. In the network for the Turing Machine simulator,

94

the number of one-input nodes activated on each cycle increased linearly with the number of
productions. In the network for the other production system, a similar increase occurred in

the number of tests required to update the node memories.

4.1.6 The Best Case Effect of PM Size on Time

As in the discussion of best case network size, unless some assumptions are made about
the system, the bounds achieved in this subsection will be uninteresting. If one asks simply,
"How fast do the time costs grow as production memory size increases?” then the answer can
be that they need not increase at all. A production system could be built which had a fixed
core of productions that fire and a growing body that never fire. If the condition elements of
the productions that never fired were sufficiently different from the conditions in the others
-- perhaps all the conditions in the silent productions having exactly thirteen subelements
while none of the others had thirteen -- a single node activation after each action would
suffice to process ail their conditions, regardless of the number of productions. But a
production system containing a large body of productions that never fire is unrealistic. In an
aitempt to get a more interesting bound, the analysis in the rest of this section will assume

that the ccllection of productions in production memory are all equally likely to fire.1

One more assumption will be made to simplify the analysis, but it should have no effect on
the results achieved. The assumption is that instantiations enter the conflici sei at the same
rate that productions fire. Obviously they cannot enter at a slower rate, for the production
system would eventually empty the conflict set and halt. If they entered faster, some would
never be executed, and the effort expended in finding them would be wasted. In a best case

analysis, the assumption should be made that effort is not wasted.

With these two assumptions made, the question to be asked becomes, "How much
processing must be performed in order to add an average of one instantiation per cycle to
the ‘conflict set, assuming that all productions are equally likely to enter the set?” The general
form of this question is, "How difficult is it to select one element from a set if all the elements
are equally likely to be selected?” The answer to the general question is that methods which
invoive making binary comparisons require on the order of log,(S) steps, where S is the size
of the set. The best case bound is, therefore, that the time costs grow logarithmically with
the size of production menicry.

This bound is sharp; the OPS2 match can come within a constant factor of it. Suppose a

ll? would be interesting ‘o perform this analysis assuming that all productions can fire, but making no assumption
about their relative likelihoods of firing. This analysis wili not be attempted here.

95

vector is stored in production memory, one production for each of its elements, and suppose
the indices of the vector are binary numbers represented as lists of bits:

(INDEX 0100, ., .11),

If element 3 of a 32 element vector held the number 2.71828, the producticn for this
eiement would be

Element3 ((INDEX 0 0 0 1 1) --> 2,71828),

An OPS2 network for a production system like this would require 2logy(K) + 2 tests to select
an element from a vectcr containing K elcments. One test would be made for the iength of
the index, one for the constant INDEX, and then each bii of the index would be compared to
O and to 1. Two tests of each bit would be made because the OPS2 match does not

understand mutualiy exclusive conditions.

This production system does not show exactly what was wanted, however; the production
system cannot grow beyond a bound fixed by the length of the index. Indices of B bits
suffice to index only 2B elements. But slightly changing the representation yields a
production system that is able to grow indefinitely. The change is to represent the binary
numbers as variable length strings of O’s and 1’s. The index for element 2 is written
(INDEX 1 0); the index for element 14 as (INDEX 1 1 0 1). The production for element 3
of the vector would then be written

ciement3 { (INDEX 1 1) =--> 2,71828),

Selecting an element from a vector of K elements using this representation requires
approximately 3logy(K) tests (1.5 times as many as before). On the firsi ievel of the network,
where tests of element length are made, log,(K) tests are performed on each token. The
log»(K) tests include one for indices of 1 bit, one for indices of 2 bits, and so on up to log?_(K)
bits. Logz(K) is the lenglh of the longest of the indices. Half of all the indices are this long.
Of the remainder, one-half have logx(K) - 1 bits, one-fourth have logo(K) - 2 bits, one-eighth
have logo(K) - 3, and so on. Only two indices have only 1 bit. If all the indices are assumed
to be equally likely to occur, then the longer paths will process more tokens than the shorter
ones. Thus the number of tests of binary digits approaches the length of the longest path:
log»(K). Again, two tests are performed on each binary digit, and one test is performed on
the constant INDEX. The total number of tests is thus approximately

96

i (the constant INDEX)

+ log»(K) (the length tests)
+ 2logo(K) (the tests for C and 1)

4.1.7 The Worst Case Effect of WM Si~3 on Time

When an element is added to or‘de!fe!s:‘i-r'.mm.working memory, a token is created and
processed by the match routine. ' So;ne number of one-input nodes are activated, and
possibly one or more memory and two-input nodes. Each of the one-input nodes performs
exactly one tast, but the number of tests performed by the two-input and memory nodes
depends on the current contents of working memory. When working memory is large, the
node memories often contain many tokens, causing the two-input and memory nodes to
perform many tests when they are activaied. In addition, with their input memories hoiding
many elements, the &VEX nodes are likely to produce several output tokens for each input
token. Each of the new tokens will cause further processing. The purpose of this section is
to determine an upper bound for the effects of working memory size. Since the effects of
production memory size on the time costs have z2'ready been discussed, it is sufficient here to

consider only a single production.

The number of tests performed by the twe-input and memory nodes is a maximum when
the memories of the network contain the greatest possible number of entries. Since tests
performed by one-input and two-input nodes prevent some tokens from reaching the
memories following thase nodes, the number of entries in the memories is greatest when no
such tests are performed. The worst case, then, is a production whose condition elements

have no selectivity:
PEXP (=X1 =X2=X3 , ., . 3XC ==>, ., &)

If working memory contains W elements and the production’s LHS contains C condition
elements, then the two-input nodes for this production perform on the order of wC-1
operations in processing a single working memory change.1 Since the LHS contains C
condition elements, the network contains C-1 &VEX nodes. The first of these has W elements
in each of its input memories, so when it receives a new token on either input, it produces W
output tokens. After each working memory change it receives 2 tokens describing the
chaﬁge (a token is received on each input) and therefore outputs 2W tokens. The second

11f the working memory change is an add, working memory’s size will become W+1; if the change is a delete, its size
will become W-lc Depending & the order in which the nodes are executed, the number of tests performed could be of
the order (W-1) -1 or (Wel) 'l. But since this secticn is concerned with large W, the difference is not significant and
can be ignored.

97

&VEX node receives these 2W tokens on its left input, and the 1 token resulting from the
working memory change on its right. The left memory of this node holds all pairs of elements
matching =X1 and =X2, a total of W2 elements. Thus the 1 element arriving Giv the right
caﬁses the node to output W2 tokens. Since this ncde, like the first, has W elements in its
right input memory, the 2W tokens arriving on the left cause 2w2 output tokens, for a total
of 3W2 tokens output. A similar analysis shows that the third & VEX node has w3 elements in
its left memory (all the three-tuples matching =X1, =X2, and =X3) and therefore produces
aw3 output tokens. Continuing the analysis in this way shows finally that the last &VEX node
{(the C-lSt) outpuis cWC-! tokens. The total number of tokens built and output is

cWC L 4 (c-1WC2 + 4 2w.
If W is large, the first term will dominate. The time costs can therefore be approximated by
cwC-1,

The number of tests performed in updating the node memories can be greater than this.
Suppose the oldest element in working memory is deleted. Then the two-input nodes will
execute as just described, producing the staied number of output tokens. Tagged INVALID
since they result from a delete, these tokens will cause the &MEM nodes to search through
their memories and delete identical data parts. Since the working memory element deleted
was the oldest in working memory, the data parts to be deleted will be distributed uniformly
throughout the node memories (e.g., in the memory following the first &VVEX node, the data
parts will occupy ihe last position, the last-C position, the last-2C, and so on). On the
average, then, deleting one of these data parts will require searching through just over
one-haif the eiements in the memory. Assuming the number is exactly one-half, each token
processed by the &MEM node following the first &VVEX node will require 05W?2 tests. Since
the first & VEX node outputs 2W tokens, the total cost at this &MEM node is W3 tests. Each
token processed b).t the &MEM node following the second &VEX node requires osw3 tests,

for a tota! of

(0.5WS * 3W2) = 1.EWD,
The &MEM node following the third &VEX node performs

(05W3 + aw3) = 2w’
In general, the &MEM node following the kth &VEX node performs

©5WK*1 + (ke 1)WK) = 0.5(k+1)W2K+L,
The C-2"9 &VEX node is the last to be foliowed by an &MEM node. It performs

98

(05WC-1 & (c-1)WC-2) = 0.5(C-1)W2C-3,
When W is large this term dominates, and the costs can be approximated by 0.5(C-1)W2C"3.

Finally, the &P node may perform more operations then either the &VEX or &MEM nodes.
Most tokens arriving at PEXP’s &P node result in scanning the entire conflict set. All tokens
tagged VALID cause the node to scan through the entire set.! Tokens tagged INVALID or
OLD-VALID cause the node to scan the entire set if they arrive after the old instantiation has
been executed. Since the &P node is the successor to the C-iSt &VEX node, if working
memory holds W elements, then the conflict set may contain WC instantiations. {It contains
fewer only if some of the instantiaticns have already executed.) Since this is a worst case
analysis, assume that the size of the conflict set is approximated by WwC. After each charge
made to working memory, the c-15t &VEX node produces cwC-1 output tokens. The &P node
therefore performs about

(cwC-1 + wC) = cweC-1
tests in updating the conflict set.

In summary, in the worst case one working memory change can result in the &VEX nodes
performing cwC-1 operstions, the &MEM nodes performing 0.5(C—1)WZC'3, and the &P node
performing cW2C-1 These are operations of different kinds, and they are not equally
expensive to perform. But regardless of their relative costs, if W is large, cw2C-1 it

dominate the total cost.

4.1 .8 The Best Case Effect of WM Size on Time

The time required to execute a production system can be independent of working memory
size provided the production system possesses three properties. First, the condition
elements must be discriminating enough that ro two-input nodes produce combinatorially
increasing numbers of output tokens as working memory grows. Second, either the network
must contain no memcries, or the productions must never deiete any working memory
elements except the most recent. Third, the conflict set must not grow; instantiations must

not enter the set faster than they can be executed.

These three properties are restrictive, but a nroduction system with the properties can be
constructed. The following production system performs the Sternberg classification test [54].

lI‘t is unnecessary {o scan the set, but having been taken unchanged from an earlier varsicn of the interpreter, ihs
&P node is not as efficient as it could be. It has never been changed because the confiict set is usually small, and
scanning the set therefore inexpensive.

99

The system is initially given a set of digits, perhaps {2, 3, 8}, and then given probe digits one
at a time. After each probe it answers YES if the probe is a member of the set and NG if it is

not.

PYES ¢ (probe =Y =X)(set =X) =--> (answer =Y yes))

PNO = ((probe =Y =X) - (set =X) ==> (answer =Y no))

PCONT ((answer =X =R)
-
(<WRITE> =R}
(<WRITE> "Ready for the next probe,")
(probe (<BIND>) (<READ>)))

The set is represented by one working memory element for each member; the set given

above would be

(set 2)
(set 3)
(set 8),

The probes are held in working memory elements with three subelements. The first
subelement is the atom probe. The second subelement is a unique integer generated to keep
the probe elements distinct. The third subelement is the probe itself. The first two
productions examine working memory to determine whether the probe is a member of the
set. The third production prints the answer, prompis for another probe digit, and builds the
‘probe element from the input. Working memory gains two elements each time a digit is
_lassified, but since the production system has the above three properties, it can run

indefinitely without slowing down.

4.1.3 The Worst Case Effect of WM Size on Token Memory

The werst case effects of working memory size on the number of tokens stored have
already been seen. In the section on worst case time costs, a production was defined that

required storing the greatest possible number of entries in every node memory:

PEXP (=X1 =X2 =X3 e o e =X¢ =~> [))e

The analysis contained in that section showed that the left input memory of the kth &VEX
node stored WK elements, and the right input memory of every node stored W. (W was the
number of elements in working memory and C the number of condition elements in the

100

production.) It also showed that the conflict set would contain as many as WC instantiations of
PEXP -- the instantiations must be counted here because cach contains a token. Since PEXP
contains C condition elements, its network has C-1 &VEX nodes. The total space cost is

therefore
wC (the conflict set)
+WC 1l +w (the left input memories)
+ {(C-1)W (the right input memories)

If W is large the first term dominates this expression, and the space costs can be

approximated by wC.

4.1.10 The Best Case Effect of WM Size on Token Memory

The amount of space required to store tokens can be independent of the size of working
memory if the produciion system meets twe requirements. First, the conflict set must not
grow; instantiations must be executed as fast as they enter the set. Second, the network
must contain no memories.! This wili be the case only if the productions all have exactly cne

condition element.

These requirements are more restrictive than the three given in the section on constant
time costs. (This should not be surprising since a production system with constant space
costs will also certainly have constant time costs.) Because it is interesting to consider
whether these more restricted production sysiems can perform the same tasks, the Sternberg
task has been chosen to show that the constant space bound is sharp:

(probe

PYES1T (=Y =P =P = =) =-> (answer =P yes))
PYES2 ((probe =Y =P = =P =) =<> (answer =P yes))
PYES3 ((probe =Y =P = = =P) --> (answer =P yes))
PNO ((probe =Y =P #P #P #P) --> (answer =P no))
PCONT ((answer =Y =R)

-——
(<WRITE> =R)

(<HWRITE> "Ready for the next probe,")
(probe (<BIND>) (<READ>) 2 3 8))

lIf there are classes of elements, only soma of which incre2ee in numbers, this constraint can be weakened to
require only that there be no memories storing elements like thoge whose numbers are increasing.

101

The restricted LHS format was compensated for by writing more productions and making
them specific to one initial set. Since PCONT contains the initial set of integers in its RHS, it
cannot be built until after the initial set is given. The first four productions are also
specialized in that they will work only with sets of exactly three elements. They are not so
specialized, however, that they would have to be built after the initial set was given; the
production system could contain a group of productions for every possible set size.

4.2 Expected Effects

The analyses in this section are very different from the ones in the last section. The
outline of each analysis in the previous section was the same; a bound was predicted based
on worouperties of the algorithm or the task in general, and then a production system was
described which achieved the bound. In this section, the analysis begins with a production
system, or more properly, a class of production systems. An attempt is made in this section
to take a set of properties that are common to large producticn systems, and to determine
from these how the costs of interpreting production systems will increase as the systems

grow larger.

4.2.1 Characlerisiics of Large Production Systems

This subsection points out the properties of large production systems that are relevant to
the expected cost analyses. As mentioned before, the assumption will be made that the
production systems written by the Instructabie Production System (IPS) group are typical of
large systems. The discussion in this section is one person’s interpretation of the
experiences of this group in building systems containing a few hundred productions. Since it
is an interpretation and since new techniques for writing production systems will undoubtedly
emerge as the systems are made bigger, the analysis is at best suggestive, and certainly not

io-be accepted wiihout question.

Most of the productions written by the IPS group are sensitive to goals. Generally the
first condition element in a production matches a goal, and the remaining condition elements
locate the data to be processed and test the state of working memory. The productions in
the MKYBAN production system are typical. In production MBS, for example, the first
condition element matches goals asking for one object to be moved near another, and the
remaining two ccndition elements test whether the object is light encugh to carry and
vrhether it needs to be moved from its current location.

102

MBS ((Uant (=0 Near =P)) (Light =0) (=0 Near #P)

-—>

(Kant (Monkey Holds =0)))

A common form of growth in these production systems is the implementation of a new goal
type. The user creates a new goal class name, like Holds, On, or Near, and writes a set of
productions whose goal condition elements contain the class name.l When instances of the
goal appear in working memory, these productions fire and attempt to satisfy the goal.

Sometimes the initial set of productions proves inadequate, and then in order to refine the
system’s response more productions must be added. The productions are commonly added
using a technique called renaming. One production is added that recognizes the situation
which gave trouble. When it fires, this production transforms the goal in some way; it might,
for example, change the goal class name from On to Onl. The rest of the productions that
are added are sensitive to the transformed goal; when it enters working memory, they are
activated to perform the new actions. The reason for transforming the goal is to prevent
interactions with the existing productions. If the new productions were sensitive to the same
goals and data elements as the old productions, the old productions would sometimes fire at

the wrong time and take control away from the new ones.

Two other forms of growth are possible, but in this writer’s opinion neither wili be
commonly used. The first is adding productions that are nct specific to a goal. These
productions either contain no goal-matching condition element or contain elements that will
match goals from many classes. Production MB10 is an example.

MB10 ((Hant =2) =2 --> (<DELETE> (Want =2)))

The reason for believing this kind of growth will be rare is simply that in the past
productions of this nature have received limited use. The other possible form of growth in
production systems is to refine an existing goal without using renaming. This involves simply
adding a group of productions that are sensitive to the same elements as the existing
productions. The reason for believing this technique will see limited use is that it makes
controlling interactions difficult. Because production memory is unstructured, searching
through it to determine how.the production system would behave in a given situation could

be prohibitively time consuming.

1Ir\ many production systems, goal ciasses are indicated by a conjunction of two or more names. When this practice
is followed, it is possible to creale 2 now goz! class by combining existing constants rather than sdding a new constant.
This distinction makes no difference in the analyses that follow.

- 103

If it is true that the two most common forms of growth in a large production system are
the implementation of new goal classes and the refinement of old ones through renaming, two
things will be true of the goal class names:

- New constant names (or new combinations of existing names) will be introduced
with most new groups of productions.

- There will be a limit to the number of productions sensitive to each constant
name or combination of names,

New constant names will probably also be introduced for the other working memory
elements -- the ones holding the data relevant to the goals -- though the rate of introduction
may be slower. It is of course possible to add a set of productions that operate on the same
data as an existing set; in a production system for designing electronic circuits, for example,
many productions may contain data elements that match assertions about transistors. But it
must surely be true in general that large prcduction systems have more diverse abilities than
smaller ones. As a production system grows and acquires these abilities, new classes of data

relevant to these abilities must occasionally be introduced.

This argument does not imply that the average number of productions sensitive to a given
data class will be bounded. The argument would allow the number of constants to be a
sublinear function of the number of preductions in the system. But another argument can be
made that the number of productions sensitive to a data class should not increase rapidly.
Surely the more there is known about a given set of data, the less likely it is that the need to
learn more will arise. Since ail information in a production system is encoded procedurally,
the number of productions sensitive to a given class of data is 2 reasonable measure of the
amount known about that class. Thus the rate at which productions sensitive to a given data
class are acquired is probably inversely related to the number that already exist.

Thus it seems that rather weaker predictions can be made about the data class names than

were made about the goal class names:

- New data class names will frequently be introduced with new groups of
productions.

- The average number of productions sensitive to a given data class name may
increase as the production system grows, but the rate of increase should be a
subiinear function of production memory size.

104

4.2.2 The Expected Effect of PM Size on Network Size

Since the network as a whole grew linearly in both the best and the worst cases, it will
grow linearly in all cases. In the best case, however, some kinds of nodes grew in number
either very slowly or not at all. A question to consider in this section is whether this will
also happer with the typical production systems described above. If the practice of renaming
goals is followed as extensively as was suggested above, then the answer to the question is
no; linear growth can be expected on all levels of the network. Every new goal type will
resuit in new one-input nodes to recognize it. New two-input nodes and new memory nodes
will be needed to join these into the network.

4.2.3 The Expected Effect of PM Size on Token Memory

As just argued, the number of memories in the network can be expected to grow linearly
with the size of production memory. The question to ask in this section is whether the
fraction of the memories that are non-empty remains constant or decreases. Since most of
the productions that fire are sensitive to goals, the bulk of the data elements in working
memory at any given time are goals and the data that is relevant to the processing of these
goals. Most of the tokens held in the node memories therefore contain either goals, data of
this kind, or n-tuples of goals and data. Each of these kinds of tokens is considered

separately in the following paragraphs.

The number of stored tokens holding goal elements should not increase. Because of the
practice of renaming goals, when a new set of productions is added to a produciion system
new goal class names are introduced. This is true whether the productions give the
production system a new ability or enhance an old one. Since the goal class names appear in
the condition elements matching the goals, the goals can be discriminated by the one-input
nodes. The goals for Move will not enter the memories of the productions for Find, or even

Move2.

This easy discriminability of goals aisc has the effect of preventing an increase in the
number of tokens for n-tuples of elements. The condition element that matches goals is
conventionally written first in a production’s LHS. Since the OPS2 compiler arranges the
two-input nodes for each LHS in a linear sequence (reflecting the sequence of condition
elements in the LHS) o tokens containing more than one data element are constructed unless

an appropriate goal is in working memory.

The !ast group of tokens to bc considered are those that held the datz re'avant to the

processing of goals. An increase can be expected in the number of siored tokens of this

105

kind, but the rate of increase should be less than linear. As argued before, the rate at which
productions sensitive to a given data class are acquired is probably inversely related to the
number that already exist. Furthermore, adding a set of productions sensitive to a particular
data class does not necessarily increase the number of memories for that class. Existing
memories will be shared unless a new condition element contains a unique set of constants
and other features tested by one-input nodes. The likelihood of creating a unique set of
one-input nodes must decrease as the number of different sets already in use increases.

4.2.4 The Expected Effect of PM Size on Time

In determining the expected dependency of time on production memory size, this section
considers separately ihe ettort expended at the one-input nodes, the two-input nodes, the

memory nodes, and the &P nodes.

Because of the practice of renaming goals, the effort expended at the one-input nodes
increases linearly with the size of production memory. To make it eas::r to describe the
effect, assume that the class of a goal (Move, Find, Stack, etc.) is the first subelement of the
goal. Tests for constants in this position are made by the nodes on the second level of the
network. Since renaming goals causes the number of classes to increase linearly with the
number of productions in the system, the number of nodes on this level will also increase
linearly. The nodes preceding these &ATOM nodes perform tests cf the length of the goal
clements. Since goals do not vary greatly in the number of subelements they contain, this
length test wiii not discriminate among the goals very well. Consequently, the number of
&ATOM nodes activated will increase linearly with the number of nodes on the second level.

The efiort expended at the memory nodes should increase at a sublinear rate. This follows
immediately from the results of the last section; the effort expended at the memory nodes

varies directly with the average number of non-empty memories in the network.

The number of two-input nodes activated will increase along with the number of memory
nodes, but the total effort expended at the two-input nodes will grow more slowly. This
follows from the assumption that new goal ciass nameas are introduced along with every new
collection of productions. Since the condition elements to match goals are placed first in the
LHSs, most of the two-input nodes will have empty left input memories. As the number of
node activations increases, the number of nodes with non-empty left memories will remain
nearly constant. Thus an ever growing fraction of the nodes wili do nothing except examine

their memories to find that they are empty.

If the number of two-input nodes with non-empty left memories does not increase, then
the number of &P nodes activated should not increase either. Thus the effort expended at

106

the &P nodes should e nearly constant.

4.25 The Expected Effect of WM Size on Time

The expected effect of working memory size on the time required to execute a production
system cannot be predicted. The production system characteristics that determine the
effects on time are a matter of styie. Some programmers ernsistently write productions that
are very scnsitive to the size of working memory, and some never write such productions.
Some programmers mix the two, writing some productions that are sensitive to the size and
others that are not. The production systems writter by those in this last group vary in their
time costs from one cycle to the next as different goals are depusited into working memory.

4.2.6 The Expected Effect of WM Size on Token Memory

The expected effect of working memory size on the space required to store tokens can be
determined little more precisely than the expected effect on time costs. The oniy difference
here is that the range of possible costs can be narrowed somewhat. The time costs vary
from constant (i.e., no effect) to polynomial. The degree of the polynomial is the number of
condition elements in the production. The space costs range from linear to polynomial. The
reason for the new lower bound is that since single-condition productions are rare, most

working memory elements have images in at ieast one node memory.

4.3 Summary of Costs

Tables 4.1 and 4.2 summarize the results of this chapter. The usual notation for complexity
(see [1]) is used: O(1) indicates constant cost; O(~) indicates the cost is a linear function of x;

O(f(x)) indicates the cost varies as the function f.

Best Worst Expected
Network size OP) o) o)
Token Memory o(1) owP) <OP)
Time Oflogx(P)) OP) o)

P is the number of elements in production memory.

Table 4.1. PM Size Effects

107

Best Worst Expected
Token Memory o(1) owC) ?
Time o) ow2C-1) ?

W is the number of elements in working memory.
C is the number of condition elements in the productions.

Table 4.2. WM Size Effects

4.4 Improving the Performance of the OPS2 Match

The analysis in this chapter has uncovered a significant weakness in the OPS2 match
algorithm, namely the expected time complexity of O(P). However, this is the result of the
particular implementation of the Rete Match Algorithm, not an inherent property of the
algoritkm. This section describes two minor modifications, either of which would reduce the

complexity.

4.A1 Binary Search

The linear dependency arises because of the particular set of one-input nodes chosen.
Use of these nodes sometimes causes the match to scan linearly through long lists of mutuaiiy
exclusive constants. For example, in the case of goal class names mentioned before, the

network might include the following set of nodes

v

Is the first subelement
of the second subelement

Monkey? \ \

Is the second subelement Is the second subelement
of the second subelement of the second subelement
Holds? On?

Is the second subelement Is the seccend subelement

of the second subelement of the second subelement

tate? Near?

108

Since these are mutually exclusive constants, a binary search could be used, reducing the
effort to a logarithmic function of the set size. To incorporate such a search into the
network, a new node type testing a lexicographic order on the constants could be used. i
practice, this might be implemented by the interpreter’s replacing each constant by a number,
converting back to a string of letters only to communicate with the user. But to make the
example more readable, assume the order is based on the first character of the names. Then
the above part of the network could be changed to

!

Is the first subelement
of the second subalement

Is the first characler Is the first character
of the second subelement of the second subelement
of the second subelement of the second subelement
less than I? greater than or equal to I?
Is the second subelement Is the second subelement
of the second subelement of the second subelement
Holds? . W On?
Is the second subelement Is the second subelement
of. the second subelement of the second subelement
Eata? ‘l Near?

The new nodes are redundant; they would be used only at places in the graph where the cost
of a linear search through the successors of a node would be excessive.

There is reason to believe that changing the interpreter in this way would reduce the
expected time costs from O(P) to O(log,(P)). Section 4.2.4 argued that the dominant cost
factor in interpreting very large production systems will be the time required to execute the
one-input nodes. Section 4.1.6 showed that the OPS2 match can achieve logarithmic time
costs if the one-input nodes are arranged appropriately. The 0OPS2 compiler does not
arrange the nodes appropriately for the expected kind of production systems, but the
changes suggested here should eliminate its prokiems.

109

4.4.2 Hashing

The scheme just described has one unfortunate prorerty: the extra nodes increase the
size of the network. An alternative will be described now which will probably not affect the
size of the network noticeably. (This depends upon the representation ot the nodes, cf

course.)

Again 2 new node type must be defined, but this node is quite diffcrent from the nodes
described in Chapter 2. This node would test multiple, mutually exclusive features. It would
distinguish among its output edges, and depending on which feature a given token possessed,
it would select some subset of the edges to receive the toker.. The network fragment in the

|

Is the first subelement
of the second gubelement
Monkey?

last subsection would become

Is the second subelement
of the second subelement
On?
Near?

))

This node would hold the features in a data structure called a hash table. A hash table has
the prcperty that the number of entries which must be examined to determine whether a
given element is present is independent of the size of the table; if the table is used properly,
the average number of elements examined will be less than 2 (see [28]). Thus networks

incorporating these nodes are potentially quite fast.

A problem with these new nodes is that they complicate the compiler. If the language
allows productions to be added while the system is running (as OPS2 does), then it will
happen on occasion that a hash table will be filled. When this occurs, the compiier must build
a new hode with a bigger table, copy the information from the original node, and link the new
node into the network in place of the old one.

110

111

5. Measurements of the OPS2 !nterpreter

The results of an empirical analysis of the OPS2 interpreter are presented in this chapter.
Most of the measurements were made in order to complement the analysis of the previous
chapter. These measurements determined the absolute time and space costs of interpreting
three of the largest OPS2 production systems. The measurements showed that the effects of
growth in the production systems are essentially as Chapter 4 suggested. One additional set
of measurements was made in order to determine the potential for paralle! execution of the

algorithm.

5.1 Measures of Time Complexity

The choice of what to count in measuring the OPS2 interpreter is not obvious. It would be
easy to chcose an inappropriate measure and give a distorted picture of the complexity. For
cxample, one measure that might seem appropriate is a count of the number of tests
performed during the match. As Chapter 4 showed, however, sorme of the selectivity in the
match comes from activating two-input nodes with empty input memories. If only the tests
were counted, this effect would be missed, and its suspected increase in importance with

larger production memories would go untested.

A conservative approach to measurement was taken in this chapter; an attempt was made
to account for all the increase in execution time resuiting from larger production memories.
(Production memory size is the most interesting independent variable.) The interpreter was
divided into functional units whose costs were independent of production memory size, and
then during the measured runs, counts were made of the number of times these units were
executed. Multiplying the counts by the consiant costs of the units and summing should
account for all the time. If the time computed this way agrees with the measured times, then
no effects of production memory size can have been overiooked.

Ideally, the functional units would have been chosen so that their costs were constant over
all production systems, but this was not practical in all cases. Since the programs to perform
the act and conflict resolution phases have not been described, their parts could not be so
divided. Some of the node programs couid not be divided because of the way they were
written. Where the division of programs was not pcssible, the time costs of the programs

were measured individually for each production system.

5:1.1 Measures of Time Complexity: Detail -

The total time expended on each recognize-act cycle is the sum of two components, a fixed
overhead for each cycle and and a cost that varies with number of actions perfcrmed by the

112

producticn. The fixed overhead includes the time necessary to remove the first instantiation
" from the conflict set and prepare it for execution, to gather statistics sbout the execution of
the production system, and to print trace information if the user has requested it. Unless an
unusually great quantity of trace information has been requested, this overhead is quite small.
The per action costs include the time to instantiate the action and the time to perform the
match; the match in OPS2 is performed once for each change made to working memory.

5.1.2 The Match

The time cost of performing the match is the sum of the costs of fetching and activating
the nodes plus the cosis of performing the tests at the nodes. The cost of fetching and
activating a node is constant. The cost of performing a test at a one-input or two-input node
is constant except for the time taken by INDEX. (INDEX is the function that interprets index
vectors and extracts subelements from tokens’ data parts.) Thus if the time taken by INDEX is

 separated out, node activations and node tests can be used as measures of time compiexity.

But a decision still has to be made about how to handle INDEX.

INDEX has a non-constant cost because it locates subeiements by counting. If it is looking
for the third subelement of the fifth subelement of a list, it counts until it reaches the fifth
subelement, descends into it and counts again untii it reaches the third. The average distance
searched by INDEX depends on the lengths of the data elements, the positions of the
constants in the condition elements, the lengths of the LHSs, and other idiosyncrasies of the
program. The averzge distance should not, however, depend on the sizes of production and
working memories. If the data elemerts, condition elements, and LHSs written by a
programmer are all similar, then adding more of these to the system should leave the average
distance unchanged. Thus the cost of INDEX can be measured for each programmer and used
as a complexity measure. Since the cost of INDEX at the two-input nodes depends on a
factor that is irrelevant to the one-input nodes -- the average length of the LHSs -- it is
necessary to perform one measurement for the one-input nodes and another for the

two-input nodes.

Another program whose time is measured for each programmer is the &P node program.
Because the &P nodes use Lisp functions to search through the conflict set and to remove
instantiations from the set, the number of tests performed by the nodes could not be
counted. Since this was not noticed until after most of the timing runs had been made,
correcting the omission would have required repeating many expensive computer runs. This
rerun cost might have been deemed acceptable except that the &P node is rather
uninteresting -~ it is inefficient, performing many more tests than are necessary, and it still
accounts for only a small fraction of the total run time. Moreover, the resuits of the

113

experiments indicated that the the conflict set did not grow significantly as production
memory grew, and so the cnst for &P probably remained nearly constant.!

In order to make the measurements parsimonious, the complexity measures will be grouped
into classes. Activations of &VEX and &NOT nodes will be counted together. All activations
of one-input nodes will be counted together. Activations of & TWO and &MEM nodes will be
counted together. The tests performed by the &NOT nodes will be counted with the tests
performed by two other node types: the &VEX nodes (tests of data) and the &MEM nodes
(tests for updating the node memories). The cost of the tests perforined by the one-input
nodes (excluding the cost of INDEX) can be included in the cost of activating the node since
each one-input node performs exactly one test when activated.

Finally, then, the time cost of performing the match is approximated by

N1x(Cnl + I1) + N2#Cn2 + T2#(Ct2 + 2212) + NmtCnm + Tm#Ctm + Np+Cnp

where

N1 is the number of activations of one-input nodes.

Cnl is the cost of activat’ 2 a one-input node (including the cost of the test
performed by the node).

11 is the cosi of INDEX for the one~input nodes.

N2 is the number of activations of two-input nodes.

Cn2 is the cost of activating a two-input node.

T2 is the number of tests performed by the two-input nodes {exciuding the
tests for updating memories in &NOT nodes).

Ct2 is the cost of performing one test at a two-input node.

I2 is the cost of INDEX for the two-input nodes.

Nm is the number of activations of memory nodes.

Cnm is the cost of activating a memory node.

Tm is the number of tests performed by the memory nodes (including the

tests for updating memories in &NOT nodes).

lA fairly narrow bound can be put ¢n the number of tests performed by &P. The current implonentation performs at
least one test of every element in the conflict sel each time it is activated. Unjer some circumstances, the number of
tosts performed will approach twice the number of elements in the set. The node program could be rewritten so that it
never performed more than one test of each element in the sel; the range would then be from one test to the number of
eloments in the set. Thus the best case in the current implementation is no better than the worst case in the other
implementation.

114

Ctm is the cost of performing one test at a memory node.
Np is the number of activations of &P nodes.
Cnp is the cost of activating an &P node.

5.1.3 The Overhead of the Cycle

As stated earlier, the overhead of the recogﬁize-act cycle includes the time to remove the
first instantiation from the conflict set and prepare it for execution, to gather statistics, and
to print the requested trace information. Since tracing was disabled during the experiments,
all the production systems had the same overhead. Thus the overhead is another factor to

be measured once. It will be called O.

5.1.4 The RHS Actions

Performing an RHS action involves two steps. First the action must be evaluated to build
th> element that is to be added to or deleted from working memory, and then working

memory must be examined to determine whether the element is already present.

The time required to evaluate an action depends on the number of RHS functions that are
called, the amount of processing performed by the functions, and the number of list cells
copied in building the data element. Collectively these might be called the complexity of the
action. Since different programmers often use actions of very different complexity, the cost
of evaluating the actions is not constant over different programmers. Since the complexity is
not affected by the size of production memory or the size of working me nory, the cost can
be considered constant for a given programmer. Thus the cost of this step is another factor

to be measured for each production system.

Examining working memory to determine whether an element is present takes an amount of
time that varies with the size of the memory. Working memory is crganized as a hash table
with linear buckets. Searching for an element involves computing the hash address,
retrieving the bucket, and then scanning the bucket for the eiement. The hash function is
simple, and it does not work equally well for all programs. Hence, the time to perform this
search depends on both the size of working memory and the style of programming. The time
does not, however, depend on the size of producticn memory. This, then, is another factor to

be measured for each production system.

Since the costs of both parts are constant for a given production system, they can be
combined into a single measure of complexity. This measure will be called E, the cost of

115

evaluating a RHS action.

5.1.5 Automatic Deletions

The OPS2 interpreter contains a facility for automatically deleting old elements from
working memory. Before a run begins, the user sets a maximum age for the elements
{measured in the number of actions that have been performed since the element was added
to working memory). The interpreter then examines working memory at intervals during the
" run, and when it finds elements that are older than the maximum, it deletes them on the next
cycle. The frequency of examining working memory depends on the rate at which actions are
being performed, so the use of automatic deletion in effect adds a constant overhead to each
action. Automatic deletion can be accounted for by adding to the value of E.

5.1.6 The Complete Time Cost

To summarize the results of the previous sections, if the average production has A action
elements, the total time required for each recognize-act cycle (call this Te) is given by the
following equation.

Tec = O + A+[E + N1x(Cnl + il) + N2#Cn2 +
T2+(Ct2 + 2¢12) + Nm*Cnm + Tm#Ctm + Np*Cnp]

Production system execution rate is often measured in the number of actions performed
each second, rather than the number of productions fired. The total time required for each
action, which will be called Ta, can be computed by dividing Tc by A.

Ta = O/A + E + NI#(Cnl + 1) + N2#Cn2 +
T2%(Ct2 + 2¢12) + Nm+Cnm + Tm#Ctm + NpsCnp

Since this form of the cost formula is somewhat simpler, requiring no nested parentheses, it
will be used in the rest of this chapter.

- The meanings of these terms again:

Tc is the totai time required for each recognize-act cycle.
Ta is the total time required to process one WM change.

0] is the overhead of the recognize-act cycle.

A " is the average number of action eiements per production.

E . is the average time required to evaluate an action element.

ilé

N1 is the number of activations of one-input nodes.

Cnl is the cost of activating a one-input node (including the cost of the test
performed by the node).

11 is the cost of INDEX for the one-input nodes.

N2 is the number of activations of two-input nodes.

Cn2 is the cost of activating a two-input node.

T2 is the number of tests performed by e two-input nodes (excluding the
tests for updating memories in &NOT r: Jes).

ct2 ' is the cost of performing one test at a two-input node.

12 is the cost of INDEX for the two-input nodes.

Nm is the number of activations of memory nodes.

Cnm is the cost of activating a memory node.

Tm is the number of tests performed by the memory nodes (including the
tests for updating memories in &NOT nodes).

Ctm is the cost of performing one test at a memory node.

Np is the number of activations of &P nodes.

Cnp is the cost of activating an &P node.

5.1.7 Implementation Dependsnt Time Casis

Six factors in the cost formula depend only on the implementation of the OPS2 interpreter:
the overhead of the recognize-act cycle {0); the cost of activating a one-input node (Cni};
the cost of activating a two-input node (Cn2); the cost of performing a test at a two-input
node (Ci2); the cost of activating a memory node (Cnm); and the cest of performing a test at a
memory node (Ctin). The values of thase factors have been determined by measurements of
the OPS2 interpreter1 running on a KL version of a PDP-10. The following table contains the

results of the measurements.

l'l'ho interpreter for OPS2 has existed in many versions. The one tested was Version 2.0.

117

Cost
o 430 psec
Cnl 86 musec
Cn2 130 psec
Ct2 110 upsec
Cnm 130 psec
Ctm 58 usec

Table 5.1. Implemertation Dependent Times

5.2 Measures of Space Complexity

Before measuring the space costs, it is necessary to choose a set of complexity measures
and determine the values of some constants just as it was for the time costs. These
preliminaries are much easier for the space cosis. however, because there is less opportunity
for error; the act of making measurements cannot perturb the costs as often happens when
measuring time costs; and since the space costs are more understandable, it is less likely that
any important effecis will be overiooked.

To store and interpret a production system requires space (1) to store the nodes, (2) to
store the table of index vectors for the nodes, (3) to store the RHSs of the productions, (4) to
store the data elements in working memory, (5) to store the tokens in the node memories, and
(6) to store instantiations in the conflict set. Only four of these will be considered in the
measurements of space complexity: the space for the nodes, the space for the index vectors,
the space for the tokens, and the space for ithe conflict set. The space for the RHSs and for
data elements is not considered because OPS2 does not compile either of these; every
production and every data element addet io the system causes one more list (the RHS or the
data element) to be stored.)

Because the different node tvpes have different lengths, they cannot be counted together.
The division of nodes into one-input, two-input, memory, and &P used for the time costs can
be used for space costs also. Although the &USER and &VIN nodes are longer than the other
one-input nodes, they occur very rarely, and can be ignored. The &NOT node is one word
longer than the &VEX, but this is a difference of less than ten percent.

118

Seven measures of space complexity are thus needed. The following table lists the number
of 36 bit words required to store each. &ATOM nodes were assumed to be typical of
one-input nodes. &VEX nodes were assumed to be typical of two-input nodes. &MEM nodes
were assumed to be typical of memory nodes. The node costs include one word to link the
node to its predecessor. As explained in Chapter 3, the cost of storing a token depends on
whether it is stored by an &MEM node or an &NOT node. The value given here assumes ‘that

most are stored in & MEM nodes.

Length (Words

One-input Nodes 5

Two-input Nodes' 9 + 2 for each variable checked
Memory Nodes 6

&P Nodes 6

Tokens 2

Instantiations 8 + 1 for each condition element
Index Vectors 1 + 1 for each index

Table 5.2. Implementation Dependent Sizes

5.3 The Producﬁon Systems

Three production systems were used in the experiments. This section describes the
oroduction systems and gives the values of the production system dependent factors from

the time and space cost formulae.

5.3.1 Description of the Production Systems

The primary criterion used to select the production systems was size; they were three of
the largest OPS2 production systems available at the time the experiments were performed
(the summer of 1978).

KERNL1, written by Michael Rychener, is the largest production system to result from the
work of the Instructable Production System group [49]) This production system contains

119

about 380 productions. Approximately 260 of these implement a natural language front end
for the system. The front end translates instructions given in a restricted subset of English
into productions. Another 120 productions were added to the system by the naturai
language front end. These 120 productions give the system the ability to perform simple
tasks in a blocks world-like environment. Using them, the system can move objects from
place to place, locate objects fitting a given description, compare two objects to determine
their similarities and differences, and perform a handful of other tasks of similar complexity.
This production system is particularly appropriate for this study because it makes use of the
programming techniques that the group thinks will be used in very large production systems.

HAUNT, written by John Laird of Carnegie-Mellon University, is the largest OPS2 production
system, containing 1017 productions. HAUNT is an interactive game for one player. The
player instructs the production system io move through a large house in order to accomplish
a set of tasks while avoiding pitfalls hidden throughout the house. After each instruction the
production system describes the effects of the instruction on the state of the game. The
user inifaiily knows neither the tasks to perform nor the location of the pitfalis; he is
supposed to iearn these things through repeated attempts at the game.

PH-632, which contains 316 productions, models a skilied physicist solving textbook
problems in mechanics. It was written by John McDermott of Carnegie-Mello: University and
Jill H. Larkin of the University of California at Berkeley to conform to a psychological model
developed by Dr. Larkin [35] When PH-632 begins execution, it is suppiied with a symbolic
encoding of a problem. The symbolic encoding contains the information that a natural
language understanding compenent could extract from the statement of a textbook physics
problem, plus any information given in accompanying pictures. From this, PH-632 constructs
a quezlitative representation of the problem containing the entities with which mechanics is
concerned (forces, energies, and the like). It analyzes the qualitative representation to
generate the equations for the problem, and then solves these to get the answer.

5.3.2 Characterization of the Production Systems

Two numbers commonly used to indicate the size of a production system are the number of
productions in production memory and the number of data elements in working memory.
These numbers alocne comprise a rather crude measure, for some productions contain more
condition and data elements than others, and some data elements contain more subelements
than others. The following is a set of measures that together indicate the size of a
production system mere ptecisely.

- The number of elements in working memory. In some production systems this
number varies over a wide range. When this is true, either a range, an average,

120

or both should be given.

- The average length of a working memory element. OPS2 data elements can
contain both constant atoms and lists. Both of these should be counted.

- The number of productions.
- The average number of condition elements per production.

- The average number of features per condition element. This is computed by
counting the number of tests needed to show that a data element can instantiate
the condition element. Because of the LHS functions, the absolute size of the
condition element is not useful.

- The average number of actions per production.

A measure of action element complexity would also be useful, but it is difficult to formulate
such a measure for OPS2. Because the RHS actions contain function calls, the length of an
action element can be very different from the length of the data element it produces.
Because the RHS actions are not compiled, no interpreter-dependent measure of the
complexity (like the one for condition element complexity) is possible.

The following table contains the values of these measures for the three production
systems. The number of action elements per production was obtained from the experiments
performed to measure the effects of production memory size; the number of actions
performed was divided by, the number of productions fired. The values shown for average
data element iength were obtained by examining working memory at the conclusion of these
experiments. The number of data elements is the average size of working memory during the
runs. The rest of tne numbers were obtained by static measurements of the production

systems.

121

KERNL1 . HAUNT PH-632
Number of
Productions 381 1017 315
Condition
Elements per
Production 2.1 2.2 4.2
Features per
Condition
Element 7.6 35 7.0
Action
Elements per
Production 2.2 2.1 3.5
Number of
Data Elements : 120 75 51
Length of 8.6 atoms 2.9 atoms 6.6 atoms
Data Elements 1.2 lists 0.06 lists 1.3 lists

Table 5.3. The Measured Production Systems

5.3.3 Production System Dependent Time Costs

Four of the factors in the time cost formula depend on the production system being run:
the average cost of INDEX for the one-input nodes (I1); the average cost of INDEX for the-
two-input nodes (I2); the average cost of executing an &P node (Cnp); and the average cost
of executing an action element (E). The table below contains the values of these factors for

«

the three production systems.

KERNL1 HAUNT PH-632
I1 260 psec 230 usec 240 psec
12 360 psec 280 psec 390 usec
Cnp 2000 psec 1100 psec 1700 usec
E 7100 psec 250C usec 2700 psec

122

Table 5.4. Production System Dependent Times

5.3.4 Production System Dependent Space Costs

Three space cost factors depend on the style in which a production system is written. The
length of the two-input nodes depends on the average number of variables tested by the
nodes. The length of the instantiations depends on the number of condition elements in the
productions’ LHSs. The length of the index vectors depends on the depth of nesting of the
subelements tested. The following table lists the values of these factors for the three .
production systems. The number of variables tested by the two-input nodes and the average
length of the index vecters were determined by direct measurements. The length of the
instantiations was estimated from the average number of condition elements per production
(from table 5.4). The KERNL1 network averages 0.9 tests per two-input node, the HAUNT
network 0.09 tests, and the PH-632 network 1.6 tests.)

KERNL1 HAUNT PH-632
Two-input Nodes 11 9 12
Instantiations 10 10 12
Index Vectors q q 4

Table 5.5. Lengths of Units (Words)

123

5.4 Measuring the Effects of PM and WM Sizes

This section describes the experiments that were performed in order to determine the

effects of production system size on time and space costs.

5.4.1 The Effect of PM Size on Network Size

The experiment to determine the effects of production memory size on network size
involved compiling the three production systems incrementally. The interpreter was modified
so that it would pause after every twenty-five productions to count the number of nodes and
index vectors in the network. Graphs B.1 through 5.6 show the results of the experiments.
From these graphs it can be seen that the number of nodes grows at an essentially linear
rate, as predicted in Chapter 4. The irreguiarities in the curves can be attributed to the fact
that the experiments did not take into account the existence of groups of related productions.
When a group containing unusually complex productions is read in, the network grows faster
than usual; when a group containing unusually simple productions is read in, it grows slower
than usual. In addition, because productions from the same group are more alike than
productions from different groups, the network tends to grow faster when small groups are

being read in.

5.4.2 The Effects of °M Size on Token Memory and Time

The experiments to determine the effects of production memory size on token memory and
time costs were slightly different for the three production systems.

KERNL1 was measured by choosing a task (comparing the descriptions of two objects) that
required only 54 productions to perform. The task was performed eleven times, each time
with a different number of productions in the system. The largest production memory tested
contained 346 productions; larger memories could not be used because adding more
productions caused the system to behave differently. On each run the system was allowed to
execute long enough for the size of working memory to stabilize (at approximately 120
elements) before the measurements began. During the measured part of the run, 81i
productions fired, performing 1784 actions. The distribution of production memory sizes is
not uniform because an attempt was made to localize all abrupt changes in the costs. Initially
only five runs were made. The first run involved only the 54 necessary productions; on each
subsequent run about 70 productions were added to the system. When a sharp increase was
found in one of the curves, another run was made with a production memory of intermediate
size. This was repeated until the effect could be attributed to a set of productions for a

3000

1

Nodes

2500

2000

7500

71000

500

Two-input

o0

50 700 750 2006 250 300

Graph 5.1. Rate of Network Growth: KERNL1

350 400
Productions

Nodes

500

3500

3000

2500

2000

71500

71000

7000 7200
Productions

200 300 600 800

(«))

Graph 5.2. Rate of Network Growth: HAUNT

Nodes

3000

2500

2000t

1500

10C0}

500+

ol

50 700 750 200 250 300 350
Productions
Graph 5.3. Rate of Network Growth: PH-632

index Vectors

150,

140

130

120

110

100

90

80

70

60

50

40

30

20t
10}
O i 1 1 1 1 1 1 1 1
-0 50 7100 150 200 250 300 350 400
Productions

Graph 5.4. Rate of Index Vector Growth: KERNL1?

Index Vectors

90!

380

70

60}

50+

4G

30+

20

10

7710~

100

o0

200 400 500 300 7000 7200
Productions

Graph 5.5. Rate of Index Vector Growth: HAUNT

250

Index Vectors

200+

100}
50+
O 1 L 1 1 1 1 J
o 50 700 156 200 250 300 350
‘ Productions

Graph 5.6. Rate of Index Vector Growth: PH-632

124

single task.

PH-632 was measured in a similar fashion. A task was chosen that could be performed by
a group of 51 productions. The task was run six times, with production memory sizes ranging
from 51 to 316 productions. Since no anomalies were found in the data for these runs, it was
not necessary to use the finer divisions of the system that were used in measuring KERNL1.
Working memory size constantly increases during the execution of PH-632. To minimize the
effects of varying working memory size, three short runs were made, and working memory
was reinitialized before every run. The three runs inciuded a total of 104 productions firings

and 361 actions. The average working memory size was 51 elements.

The experiments for HAUNT were executed in a more arbitrary fashion, resulting in
somewhat less informative results. A typical run of the production system was monitored to
determine which productions fired, and these productions were separated from the rest.
There were 162 productions in this group. The remaining productions were arbitrarily
divided into 6 groups of approximately equal size. The typical run was then repeated 7
times, with production memories ranging from 162 to 1017 productions. On each run 386
productions fired, performing 827 actions. Working memory averaged 75 elements. The
problem with this experiment is that growth in the production system occured in an atypical
manner; every run involved adding some productions that were sensitive to the same goals as

the existing productions.

Graphs 5.7 through 5.9 show the effects of production memory size on time. The reason
these graphs are irregular is that different parts of the match dominate the costs of each
production system. To understand the effects of growth it is necessary to consider the
number of node activations and the number of tests performed by the nodes.

Graph 5.10 shows the average number of nodes activated after each working memory
change during the run of KERNL1; graph 5.11 shows the average number of tests performed.1
These curves generally agree wiih the predictions made in Chapter 4. The number of
one-input nodes activated increases almost linearly (though the effect of variation among
individual productions is apparent also). The number of tests performed by two-input nodes
remains constant. Over most of the mzasurements, the number of two-input node activations
either remains constant or grows slowly. There are also discrepancies with the predictions,
however. At one point (near 75 productions) a sharp increase occurs in the number of tests
performed by the memory nodes and the number of activations of two-input and rmemory

l'l'he &P nodes have been left off the grapha for the three production systems because the resulis would have been
unreadable on the scale used for the other nodes. The contribution of the &P nodes can be seen in tables 5.6 through
58

Msec per Action

150

125+

100t

751

50+

25}

50 760 750 200 250 300 350
roductions

Graph 5.7. Effect of PIM Size on Time: KERNL1

oo

Msec per Action
o
Q

L
O

40

30

20

10

700 200 300 400 500 600 700 800 900 7000 7700
Productions

Graph 5.8. Effect of PM Size on Time: HAUNT

O
Qo
1

]
9Q
o
=
[
)
Q
%)
o
[
=
40t
30[-
204
10+
o 1 H i 1 1 1 1
0 50 7100 150 200 250 300 3560
Productions

Graph 5.9, Effect of PM Size on Time: PH-632

Activations per Action

80

-
70}
60
50 One~-input
- 401
30+
A
20 ™ / ' J
é + At + +
Two-input
ol A///—‘
Memory
O 1 1 1 L] L H
0 50 100 150 200 250 300 350
Productions

Graph 5.10, Effect of PM Size on Node Activations: KERNL1

Tests per Action

175,

150} ’/////J

Memory

125

100}

75}

25} J//

—t

50 700 750 200 250 300 350
Productions
Graph 5.11. Effect of PM Size cn Tests: KERNL1

00

120~

s .
U One-input
<
.
Q
Q
7] -
c
2
g 100}
1]
<

80}

60

40\

20

i Two-input
Memory
o — 4 + + -+ +
1 1 4 1 I3 .]
0 200 400 600 800 .1000 71200
Productions

Graph 5.12. Effect of PM Size on Node Activations: HAUNT

120,

c
0 ,
.6. One-input
<
'
1
Q,
<9
k]
b~
100}

804

60}

40}

2C}H

Two-input
/ - + ‘ + Memory
0 -
o) 200 400 600 800 1000 1200
Productions

Graph 5.13. Effect of PM Size on Tests: HAUNT

700+~

|~
0
]
QO
I
.
QO
Q,
(7]
S
- + One-input
5 .
'>
3 s
< or
60}

40 /

20~
/ * * Tworinput
. 4 — + + + Memory
o 1 1],)
(0] 100 200 300 400
Productions

Graph 5.14. Effect of PM Size on Node Activations: PH-632

-)

Tests per Action

g0 !-
One-input
806G+
60}
40}
20}
— — + + + + Two-input
- + / + + Memory
O 1 1 1 1
o 7100 200 300 4GC
Productions

Graph 5.15. Effect of PIM Size on Tests: PH-632

Tokens Stored

1400

7200

71000} /

800+

600

T

400+

200+

0 ! Il . ! 1 | 1]

c 50 100 150 200 250 300 350
Productions

Graph 5.16. Effect of PM Size on Network Memories: KEBNL1

Tokens Stored

250

200}

750+

700}

50}

0 1 i 1 1 1 J
(0] 200 400 60C 3800 1000 71200
Productions

Graph 5.17. Effect of PM Size on Network Memories: HAUNT

Tokens Stored

175r

7150+

125}

71001

75

50+

25

o L 1 1 1 i]
0 50 100 150 200 250 300 350
Productions

Graph '5.18. Effect of PIM Size on Network Memories: PH-632 .

125

nodes. This can be explained by examining the preductions read in. The productions give the
system the ability to retry goals that have failed. Most of these “retry” productiors have
two condition elements. The first matches a goal requesting that another goal be retried, and
the second matches that other goal. Production M12-22 is typical.

M12-2a ((retry unit « =p) & =ci
(=p =s =m ! & =¢c2 & #z1
-
(tell phrase (W A) Being Retried | =c2)
=¢c2 (<delete> =c1))

Since a large fraction of the data elements entering and leaving KERNL1’s working memory
are goals, the memory and two-input nodes for the condition elements like the second one in

M12-2a are very active.

Graphs 5.12 and 5.13 show the average number of nodes activated and tests performed in
interpreting HAUNT. Once again the predictions of the last chapter were found generally
correct: there was littie or no growth in the number of memory node activations, the number
of tests performed by memocry nodes, and the number of tests performed by two-input
nodes. That the number of two-input node activztions grew steadily can be explained by the
aiypical way productions were added to the system. Recall that each run after the first
involved adding productions that matched some of the dala eiements used in the run. The
apparent sublinear growth in the number of one-input node activations is also probably an

effect of the atypical adding of productions.

Graphs 5.14 and 5.15 show the effects of growth in PH-632. This time the predictions of
Chapter 4 seem to be exactly right. The number of one-input node activations grows
approximately linearly. The number of activaiions of memory and two-input nodes grow
clowly. The tests performed by memory ard two-input nodes remain almost constant in

number.

Graphs 5.16 through 5.18 show the effects of production memory size on the number of
tokens stored in the node memories. The curves are irregular because the variations among
the productions dominate the results. The increase caused by KERNL1’s "ret y" productions,

for example, is more than half the total increase.

5.4.3 The Cost Formula

The following tables compare the observed costs of executing the production systems {o
the costs predicted by the formula from section 5.1.6. The computed cost includes the cost

126

of one evaluation of a RHS function (E) plus the amount of per cycle overhead that should be
charged to each action (O/A) pius the total time costs of the various parts of the match listed
below. The second and third columns show the measured and computed time cost cf
processing one working men.ory change. Tkz remaining columns break the computed cost
down, showing the cost of each class of operation. All times are in milliseconds. The
parenthesized numbers are the counts of the number of times each operation was performed.

These numbers repeat the information in graphs 5.10 through 5.15.

Prods. Meas. Comp. N N2 T2 Nm Im Np
56 76.7 76.1 6.41 0.49 59.3 0.22 0.4 2.00
(18.3) (3.78) (71.5) (1.73) {6.94; {1.00)
71 79.3 758.1 3.38 0.45 59.3 0.22 0.40 2.00
(26.8) (3.78) (71.5) (1.73) (6.94) (1.00}
81 89.2 89.4 10.9 153 59.3 1.00 7.37 2.00
(31.1) (11.8) (71.5) (7.73) (127) (1.00)
9i 92.7 93.1 124 2.44 59.3 1.13 853 2.00
(35.4) (18.8) (71.5) (8.73) (147) (1.00)
i17 94.1 945 13.8 2.44 59.3 1.13 853 2.00
(39.5) (18.8) (71.5) (8.73) {147) (1.00)
127 95.4 96.2 155 2.44 €33 1.13 853 2.00
(44.3) (18.8) (71.5) (8.73 1147) (1.00)
179 97.6 985 17, 2.44 59.3 1.13 8.53 2.00
(50.8) (18.8) (71.5) (8.73) {147) (1.00)
270 98.4 99.4 18.7 2.44 593 1.13 853 2.00
(53.4) (18.8) (715) (8.73) (147) (1.00)
217 105 105 23.9 2.59 59.3 1.28 8.93 2.06
(68.4) (19.9) (71.5) {3.849) {i54%) (1.03)
335 108 168 ~ 253 3.02 59.3 1.63 9.86 2.06
- (72.8) (23.2) (71.5) (12.5) (170) (1.03)
346 111 111 27.6 3.09 59.3 1.63 9.86 2.06

(78.8) (23.8) (71.5) {(i2.5) (170) {1.03)

Table 5.6. Cost Breakdown for KERNL1

127

Prods. Meas. Comp. N1 N2 12 Nm Im Np
162 213 21.0 13.2 0.79 2.10 0.31 0.07 1.84
(41.2) (6.05) (2.19) (2.36) (1.19) (1.67)
306 36.6 34.9 234 1.10 482 0.47 0.18 2.24
(73.0) (8.47) (7.19) (3.65) (3.05) (2.049)
444 41.8 39.7 27.7 1.42 494 0.49 0.18 2.26
{8¢.5) (10.9) (7.38) (3.78) (3.11) (2.05)
592 47.2 45.0 323 .79 5.31 0.50 0.18 2.25
(101) (13.8) (7.92) (3.81) (3.13) (2.05)
737 515 49.6 35.8 2.08 5.48 0.50 0.18 2.26
(112) (16.0) (8.18) (3.82) (3.13) {2.05}
886 54.1 51.3 37.8 2.33 5.54 0.50 0.18 2.27
(118) (17.9) (8.27) (3.85) (3.14) (2.08)
1017 54.5 51.8 38.1 2.55 554 050 0.18 2.27
(119) (19.6) (8.c., (3.85) (3.14) (2.06)
Table 5.7. Cost Breakdown for HAUNT
Prods. Meas. Comp. N1 N2 12 Nm Tm Np
51 29.9 28.8 12,0 0.68 10.9 0.42 0.20 1.72
(36.7) (5.23) (12.2) (3.23) (3.74) (1.01)
98 323 31.1 14.2 0.77 10.9 0.43 0.20 1.72
(43.7) (5.89) (12.2) (3.27) (3.74) (1.01)
148 34.4 325 15.9 0.95 10.9 0.46 0.22 1.72
(48.8) (7.34) (12.2) (3.57) (3.77) (1.01)
196 38.1 365 189 1.23 10.9 0.61 0.30 1.738
(58.0) (9.45) (12.2) (4.71) (6.21) (1.02)
240 41.4 40.0 223 1.30 10.9 0.63 0.30 1.73
(68.3) (10.0) (12.2) (4.83) (5.21) (1.02)
316 47.1 45.6 27.8 133 10.9 0.63 0.30 1.738

(85.3) {10.2) (12.2) (4.88) (6.21) (1.02)

Tabie 5.8. Cost Breakdown for PH-632

128

There is close agreement between the measured and computed times for KERNL1. There is
less agreement between the measured and computed times for HAUNT and PH-632. But even
in those systems there is no relation between size and error; the relative errors did not
generany increase with increases in the size of production memcry.1 Thus it seems safe to
claim that all the effects of production memory size have been captured in the measurements.

5.4.4 The Effects of WWM Siza on Working Space and Time

Only KERNL1 was measured io determine the effects of working memory size because it
had two features making it uniquely suited to the experiments. First, it relied on the
automatic deletion feature of OPS2 to rid its working memory of old data elements. With
automatic deletion disabled, therefore, its working memory grew steadily. Second, the task it
performed, understanding a subset of English, was complex enough to aliow extremely long
runs. The working memories of the other two production systems also grew steadily, but
those systems could not easily be made to run for long periods.

The experimenis invcived 4 runs. About 10,000 actions were performed during each run,
giving a final working memory size in each case of about 2000 elements. The interpreter was
modified so that it would pause after each 500 »ctions to print out various statistics about
those 500 actions. The tazk performed during the runs was accepting instructions and
building prcductions to carry out the instructions. OPS2’s production building mechanism was
disabled for the experiment, however, so the size of production memory remained constant at
261 productions. The disabling did not affect the processing of the system because it was
carried out in a manner that could nct be detected by the productions.

Graphs 5.19 and 5.2C summarize the results of the experiment. The number of + s
stored generally increased linearly with the number of elements in working memory. ihe
time to process one action varied greatly. The measured values fill the space between a
linear and a higher order polynomial. The reason for the variation was that different
productions were being instantiated during the measured intervals. Graphs 5.21 and 5.22
show the effects in Run 1 in more detail. (Only one run is shown because the other three
were almost identical.) The number of node activations of all kinds remained almost constant.
The number of tests performed by two-input nodes increased at a linear rate. The number
of tests performed by the memory nodes oscillated wildly. These tests were the cause of the

variations in overall time costs.

1The relative errors in HAUNT are (in order, from the smaliest sysism to the largest) 1.47, 4.67, 507, 4.7Z, 37%,
5.27, and 5.07. The relative errors for PH-632 are 377, 3.72, 5.57, 427, 347, and 322.

75000~

°
Q
A
S
7]
[}
'
Q
S A
~ Kun 1: + .
712500+ Run 2: X I
Run 3: Box /
Run 4: * +x
+
+ é//
& /é
710000} S
N
X
d
+ X
o O
X
+
7500} +
}‘3(4
x /‘
¥
50001
2500
0 i 1 1 . J
(1) 500 1000 1600 2000

Working Memory Elements
Graph 5.19. Effect of WM Size on Network Memories

Msec per Action

150}

100

200

X
. +
o
Bun 1: +
Run 2: X i¥
Run 3: Box !
Run 4: * ' x
.)
x X +
+
o
X
+ +
x
+
x
= o

0
0

590 1000 1500 2000
Working Memory Elements

Graph 5.20. Effect of WM Size on Time

Activations per Action

80

70

60

50

40

30

20

70

*—4-4\/‘\,,4/\._4/\,__./&*_/\//‘

One-input

Two-input

Memory

200 400 600 800 1000 7200 1400 1600 1800 2000
Working Memory Elements

Graph 5.21. Effect of WM Size on Node Activations: Run 1

Tests per Action

500

450

400

350

300

250

200

156C

100

50

T

T

500 400 600 800 71000 7200 1400 1600 1860 2000
Working Memory Elements

Graph 5.22. Effect of WM Size on Tests: Run 1

129

5.5 Testing the Assumptions in Chapter 4

If the arguments made in Chapter 4 about the ubiquity of renaming are correct, there
should be a noticeable effect on the network. The network should contain a few nodes with
unusually long successor fields, and the nodes pointed to by the links in the fields should be
&ATOM nodes. To test the arguments, then, one can simply examine the successor fields in
the network. The foilowing table shows the frequency of occurrence of fields of various

lengths.

130

Length In_KERNLI In HAUNT In PH-632

o 407 914 872
1 2145 2920 2248
2 204 373 265
3 56 72 71
4 16 48 32
a] 10 25 15
6 5 15 7
7 2 4 12
8 1 14 6
9 ! 3 6
10 1 4 3
11 -l 7 1
12 2 3 1
13 H 2 1
14 0 0 1
15 2 0 2
16 1 2 2
17 2 1 1
18 0 2 2
19 0 1 0
20 0 3 1
21 0 2 0
24 0 0 1
25 0 1 0
26) 0 2
29 0 1 0
31 0 1 0
34 0 2 0
39 0 1 0
40 0 1 0
41 0 1 0
42 0 1 v
43 0 1 0
46 1 0 0
48 1 1 1
51 0 1 0
55 0 1 0
69 0 2 0

Table 5.9. Successor Field Lengths

The KERNL! network contains 2 successor fields that are unusually long (more than twice
the length of the next longest field). The one with 46 elements contains only iinks to &ATOM
nodes, as predicted. The one with 48 elements contains links to &VEX ncdes. The
distribution of field lengths in the HAUNT network contains no gaps like the one from 17 to

131

46 in the KERNL1 network. Taking 50 as an arbitrary cutoff, one has four fields to examine,
two with 69 elements, one with 55, and one with 51. The two longest fields both hold
pointers to &ATOM nodes. The field with 55 elements holds 54 pointers to &ATOM nodes and
ore pointer to an &MEM node. The field with 51 elements holds pointers to &VEX nodes.
The PH-632 network contains only one unusually long field. This field contains 47 elements,
46 of which are links to &ATOM nodes. The remaining element is a link to an &LEN node.

These results are not inconsistent with the conclusions reached in Chapter 4. Obviously
they provide some support for the contention that networks will contain nodes that have
many &ATOM nodes for immediate successors. The presence of the &VEX pointers can be
explained by the size of the production systems. The discussion of growth in the last chapter
predicted that productions for different goals would sometimes be sensitive to the same data
elements, but that the number of productions sensitive to a given data element would be a
sublinear function of the number of productions in the system. If the argument there was
correct, finding lists of pointers to &VEX nodes as long as the lists of pointers to &ATOM
nodes is a result of having measured such small production systems. If the systems had been
ten times larger, the longest successor fields would probably all have contained pointers to
&ATOM nodes.

5.6 Using Hardware Efficientiy

Two realities of hardware technology impact strongly on current research into computer
architecture: (1) parailel machines are less expensive than serial machines of comparabie
" speed, and (2) the primary memories of computers often have appreciably longer cycle times
than the processors. The first of these has caused many parallel computers to be designed.
The second has caused the designers to explore caching (that is, using automatic techniques
to migrate information between primary memory and a small, fast memory called the cache)
and fetching more than one word on each memory access. Caching gives impiroved
performance because most programs show some locaiity in their references to memory; if a
given location is'accessed, there is a high probability that a nearby location will be accessed
soon. Fetching several words at once improves performance because there is an especially
high likelihood that word K+1 will be needed soon after word K is requested.

The experiments in this section were performed in order to determine how much potential
for parallel execution exists in the OPS2 interpreter and to determine whether fetching
several nodes at once would speed up the execution significantly. No experiments were
performed to determine the effects oi caching because the production systems were too
small. (If a small production system shows a potential for parallel execution, then it is safe to
assume that larger systems will show at least as much potential; one cannot make a similar

132

assumption concerning use of caching because increases in program size make caching less

efficacious.)

5.6.1 Parallel Executicn

The potential for parallel execution was determined simply by counting the average
number of nodes awaiting execution. Each time the interpreter selected a2 node, 2 count was
made of the number of nodes from which it could choose. These counts were summed and
divided by the number of times the seiection was made, giving an estimate of the average
degrze of parallel activity that is possible. The experiments were performed twice for each
production system, once with the smallest producticn system used in the production memory
size experiments, and once with the largest. The following table contains the results. The
average number of nodes activated on each cycle is also given so that a comparison can be
made between the total amount of work pericrmed and the amount that could have been
performed in paraillel. The ratio of these two is low in all cases, suggesting that large
production systems could make good use of parallelism.

Nodes Pending Nodes Activated Ratio
KERNL 1
(56 Ps) 6 24 4
KERNL1
{346 Ps) 15 115 7.7
HAUNT -
(162 Ps) 9 50 5.6
HAUNT
(1017 Ps) 26 145 5.6
PH-632
(51 Ps) 14 45 3.2
PH-632 ‘
{316 Ps) 19 100 53

Table 5.10. Potential Parallelism

133

5.6.2 Using Wider Memories

If two nodes are to be fetched when one is requested, the obvious extra node to fetch is
the immediate descendant of the requested node; if the test at the node succeeds, the
descendant will be the next node activated. 5ince the descendant node will not be needed if
the test at the node fails, whether ihis will provide any significant spead increase depends on
the fraction of the tests that fail. The following table contains the probabilities of success at
the one-input nodes. As can be seen, the probability is low, and it decreases when larger
production memories are used. Fetching the immediate successors of nodes would, it seems,

give little increase in speed.

Successes
KERNLI
(56 Ps) 38.97
KERNL1
(346 Ps) 31.47
HAUNT
(162 Ps) 17.2%
HAUNT
(1017 Ps) 6.67
PH-632
(51 Ps) 23.07
PH-632
(216 Ps) 13.27

Table 5.11. Successful Tests at One-input Nodes

Ancther possibility for the use of wider memories is to store nodes adjacent to their
~brother nodes. The interpreter could be modified so that after processing a given node, it
would next prccess one of that node’s brothers. Tnen when a node is fetched, cne or more
of the node’s brothers could be fetched as well. If the node has any brothers, they will
necessarily be activated, so this strategy eliminates the problem of fetching nodes
unnecessarily. A set of runs was made to determine the likelihood that an activated node will
have a brother to be fetched along with it. The results are shown in the following table.
Since the likelihood increases with increases in the size of the production system, using wider

134

memories and prefetching brothers would probably be quite effective with large production

systems.

Brothers

KERNL1

(56 Ps) 51.07
KERNL1

(346 Ps) : 63.87
HAUNT

(162 Ps) 73.5%
HAUNT

{1017 Ps) 88.77
PH-632

(51 Ps) 67.172
PH-632

(316 Ps) 80.7%

Table 5.12. Activated Nodes Having Brothers

5.7 Changes to the OPS2 Algorithm

This chapter, like ihe last, has uncovered a weakness in the OPS2 algorithm. The
experiments described in section 5.4.4 showed that the time required to update the node
memories is very sensitive to the size of working memory. The reason for the sensitivity is
that the node memories are organized as linear lists; to alleviate it, it is necessary only to
reorganize the memories -- as hash tables, perhaps. One might not want to make every
memory in the network a hash table since that wculd increase the size of the network.
Instead one might want the interpreter tc convert the linear lists into hash tables

autoratically when the lists become excessively long.

135

6. A Machine Architecture for Production Systems

This chapter deals with very low level implementation details; the principal concern of this
chapter is developing hardware that will interpret Rete networks at high speed. The chapter
first describes a number of changes that could be made to the OPS2 implementation; the most
important of the changes is to adopt a new representation for nodes and data elements. The
chapter then begins its consideration of hardware. It shows that a few inexpensive additicns
to the hardware of a conventional processor would allow it to interpret the nodes of the
network as fast as it interprets the instructions of its native instruction set. Next this
chapter presents some calculations which were made to evaluate the suggested hardware.
These calculations show that OPS2 wouid run more than two orders of magnitude faster on
this hardware than on the Lisp-based interpreter for OPS2; the calculations also show that
OPS2 would run more than an order of magnitude faster on this hardware than on an
interpreter that was hand coded in assembly language. The chapter ends with a brief

discussion of executing Rete networks on parallel computers.

6.1 Eiiminating References to Primary Memory

The first step in developing a fast interpreter for the network is to eliminate all possible
references to the computer’s primary memcry. This section describes changes to the
interprgter’s répresentations that eliminate most of the roferences required to perform tests,
to index into data elements, and to search the node memories.

6.1.1 Eliminating References During the Tests

The performance of a test by a one-input noce often involves examining more than one
word in primary memory. The reason for this is that the Lisp-style list is an inappropriate

representation for data elements.

A cell in a Lisp list consists of one 36-bit word, divided into two fields of 18 bits. One of .
the fields (the CDR) holds the address of the next cell in the list, or a special termination
pointer if the cell is the last one. The other field (the CAR) helds the address of the contents
of the cell. The list (A (B C)), for example, cumprises four wors. The CAR of the first
word points to the atom A; the CDR points to the next list cell. ihe CAR of the next list cell
holds a pointer to the list (B C); the CDR holds the list terminator. The other two cells of
(A (B C)) represent the sublist {B C). The CAR of the first poinis tc the atom B, and the
CAR of the second points to the atom C.

Primary memory is divided into blocks for list cells and atoms, for integers and floating
~point humbers, for machine language instructions, and for a few other data types supported

136

by Lisp. Whether a fieid holds a poinier to an atom, a list, or something else is determined by
comparing the numerical value of the pointer to the upper and fower becunds of the various
blocks of memory. If the block pointed into holds more than one data type, then the word

pointed to must be examined to determine which it is.

Consider what is necessary to perform a test at an &LEN node. After INDEX locates the
pointer to the subelement to be tested, = test must be made to determine that the value of
the pointer lies in the correct range for lists. Then the word pointed to must be tested to
determine conclusively that it is a list rather than one of the other data types in that block.
The cells in the list must then e visited one by one and counted, and finally the result must
be compared tc the constant stored in the node.

The tests performed by the nodes would require only one memory reference if two fields
were added to each list celi. The first fieild would indicate the type of the datum pointed to
by the CAR of the cell. When the CAR points to a list, the second field would hold 2 count of
the number of list celis contained in the list. Testing the length of a list with this
representation would involve examining the type field to determine whether the CAR pcints
to a list, and if it does, comparing the length field to the constant stored in the node.

6.1.2 Eliminating References During Indexing

The indexing performed by the network interpreter is very primitive. Consider this
condition element (A (=X =){(=X =)) and the &VIN node that is generated for it.

(&VIN (., . .) (VARIABLE 1 2 1) (VARIABLE 1 3 1))

Note that both the index vectors in this node contain only constants. This is true of al! index
vectors generated by the OPS2 compiler. The meaning of these indices is not unlike the
meaning of Fortran or Algol array indices, yet while the OPS2 interpreter always locates
subelements by counting, taking one memory access per count, the other languages convert

array references like If1, 2, 11 inio direct accesses of the desired eiement. The foilowing -

subsections discuss maki~¢ the network interpreter equally efficient.

6.1.3 Storing Cells in Contiguous Locations

Thne reason that INDEX cannot directly access subelements in Lisp-style lists is simpiy that
logically adjacent cells are not necessarily physically adjacent. The third element of an
ordinary array can be found witheut visiting the first two elements because there is a known
relationship between the locations of the elements. If each array element occupies one word
in the computer’s memory, the address of the third element is two greater than the address

137

b

of the first. Since the individual cells of a Lisp-style list can be located anywhere in memory,
the third element of a list cannot be reached without examining the CDR fields of the first and
second elements. The obvious change to be made to lists, then, is to store cells in contiguous
locations like array elements.

If the representation for list ceils suggested in section 6.1.1 is used, each cell contains
three pieces of information: the CAR of the cell; the indicaticn of whether the CAR points to
a list cell, an atom, an integer, or something else; and if the CAR points to a list, the length of
the list. Since the elements of the list are stored in contiguous locations, the CDR field can be
eliminated. Suppose that the foilowing list was to be stored beginning at iocation O in.

memory.

(A (P @ (P)

The first cell wouid hold the description of the top level of the list. The type field of this cell
would contain the indication for type list. The length field would contain 3. The CAR field
would point to first element of the list; since the iist is siored beginning at location 0, this
field would hold a 1. The cell at location 1 would hold the pointer that represents the atom
A. Its type field would contain the indicstion of type atom. The cell at location 2 would hold
the description of the first list (P Q). The fields fur this cell would be similar to those in
location G. The cell at location 3 would hold the description of the second sublist. The
elements of the two sublists would follow.

Q
>
Py

Type Length
o list 3
1 - atom
list 2
list 2
atom
atom
atom

atom

N s WN
O'UO'UO.D:D--I

The &VIN node for (A (=X =) (=X =)) would then become

(&VIN (, . .) (VARIABLE 4) (VARIABLE 6)),

138

One might ask how the compiler knew that the list was going to be stored starting at
location 0. Two answers are possible. The first is that location O could be dedicated to the
elements being tested by the one-input nodes; since the changes made to working memory
are processed one ai a fime, the element being changed could be copied to location O before
the match begins. The other answer is that the element is not really stored in location O and
that the numbers 4 and 6 point not to zbsolute locations 4 and 6, but to 4 and 6 locations
beyond the start of the element, wherever that is. A base register in the interpreter couid
be loadea with the address of the first cell of the list before the match begins.

6.1.4 Condition Elements Containing

A property of this contiguous storing of cells is that different lists can sometimes appear
very similar. Consider the following list.

(A (PGP (@

Its representation:

Type Length CAR
0 list 3 1

atom

[y

list 3
list 1
atom

atom

VT O TV N b >

atom

N o OO o woNn

atom Q

The tabular representation of this list is identical to the one in the last section except for
cells 2 and 3.

The &LEN nodes render this effect harmiess in most cases. The &VIN node from the last

section for example

(&VIN (, ., .Y (VARIABLEZ 4) (VARIABLE 6))

139

would not have a chance to test (and erroneously accept) the above element because it is
preceded by &LEN nodes. In networks like those constructed by the OPS2 compiler, testing
of wrong elements cannot occur if a condition element contains no ellipsis character ("{").

But consider what can happen when the condition element contains "{".

(A (=X 1 =) (=X 1 =))

The &LEN and &LEN+ nodes for this condition element would admit both

A (P Q@ (P Q)

and

(A (P apP @),

Because &LEN+ nodes are less selective than &LEN nodes, they are not always sufficient to
prevent the confusing of elements. If the &VIN node for this condition element is to avoid

confusion, it canriot access subelements directly using the representation of the last section.

This node (and other nodes in similar circumstances) can, however, access subelements
using fewer memory references than it would with the current Lisp representation. To locate
the first subelement of the third subelement, for example, the &VIN node wouid read 2 cells.
First it would examine location 3 to determine where the third subelement begins. Then it
would access that location -- location 6 in the first data element, 7 in the second -- to get
the pointer contained in the CAR field. In the Lisp representation, 4 cells wruld be read. To
locate the pointer to the third subelement would require following the CDR pointers of the
first two cells. The third subelement (in location 3 above) would have to be read to get the
value in the CAR field, and then the location pointed to by the CAR field read to get the
subelement to test. Thus the representation of the last section halves the effort of accessing

the subelement in this case.

A different representation, described below, would reduce the effort stiil further, allowing
direct accessing of subelements in all cases.

6.1.5 Storing Cells in Dedicated Locations

The next representation involves setting a maximum length for all the subelements and a
maximum depth to which lists can be nested. Suppose no list was allowed to contain more
than 10 elements and that lists could be embedded to no more than two levels {see section

140

6.3.5 for a discussion of the limits). Then nc data element would occupy more than 111
locations in the tabular representation. If the full 111 locations were allocated to each
element, and if the cells to be left empty were carefully chosen, it would be possible to
access any subelement in one step. The subelements should be stored as follows. Location O
holds the cell that describes the top level of the list. Locations 1 through 10 hold the cells
that describe the subelements just below the top level. If the element has less than 10
subelements there, the unneeded cells are left empty. Locations 11 through 20 hold the cells
describirg the subelements of the first subelement. Locations 2i {hrougn 30 hold the cells
describing the subelements of the second subelement. Locations 41 through 110 are used for
the subelements of the third through tenth subelements.

Since the sublists always occupy the same locations when they are present, the
information that was heid in the CAR field of the type "list" cells is no longer needed. If the
cell in location 1 has "list" in its type field, then the list will necessarily begin in location 1.
If the cell in location 2 has "list" in its type field, that list will begin in location 21. The CAR
fields cannot simply be omitted since the information they hold for type “"atom” cells is still
needed; but by rearranging the information in all the cells, the number of ficlds can be
reduced from 3 to 2. Cells pointing to lists require a type field and a length field; cells
pointing to atoms require a type field and a CAR field. The length and CAR fields can be
combined into one field -- called perhaps the value field.

In this new tabuiar representation, the data element

(@ Pa

is (only the occupied cells are shown)

Type Value
o _ list 3
1 atom A
2 list 2
3 list 2
11 atom P
12 atom Q
21 atom P
22 | atom Q

141

The data element

(A (PGP (D))

is
Type Value

o list 3
1 atom A
2 list 3
3 list 1
11 atom P
12 atom Q
13 atom P
21 atom Q

6.1.6 Choosing a Tabular Reprasentation

In choosing between the representations in sections 6.1.3 and 6.1.5 one is faced with the
common tradeoff of space efficiency for time efficiency. The representation in section 6.1.5
allows faster accessing of subelements, but it can be wasteful of space. This section
proposes a compromise: using one representation for the one-input nodes and another for

the rest of the nodes.

When the match is performed once for each change made to working memory (as it is in
the OPS2 interpreter), all the one-input nodes test the same data element. Since many
one-input nodes will be activated each time if the production system is large, it would be
reasonable to convert the data element from its normal representation (presumably the
representation of section 6.1.3) intc the expanded representation before executing the nodes.
The time saved in executing the one-input nodes could far exceed the time required to
convert the datz element. The extra space required would not be great because at any time

only one data element would be in the expanded representation.

The typical two-input node would not be slowed excessively by this compromise. Even
though all the elements they test will be in the compact representation, the two-input nodes

142

will have to use the slower form of indexing only on occasion. In performing the variable

tests for
(A (X1 =) YL =)

for example, the nodes will have to use the slower indexing for =Y, but they can index
directly to =X. If future production systems use “!" as rarely as present day production

systems, most of the tests will involve direct indexing.

6.1.7 Tokens

If the compromise described above is adopted, some node programs will have to be made
more flexible. The reason for this is that one- and two-input nodes will then differ in a
fundamental way. With this table in use, the one-input nodes will not send tokens to their
successors; they will send only control, relying on the successor nodes to read the data
element from the table. Since the two-input nodes must build tokens as before, they will
pass both control and tokens to their successors. Because &P, &MEM, and & TWO nodes can
follow either one- or two-input nodes, they must have the flexibility to receive either control
alone or both control and a token. In addition, either the two-input nodes must have the
same flexibility, cr the &MEM and & TWO nodes must be able to build tokens from the data in
the table.

6.1.8 Eliminating References During Node Memory Examination

Since most of the data parts stored in the node memories coniain only one data element
(see sections 4.2.3 and 5.4.2) it is particularly important that examining the single element
entries not require the fetching of many words. Best is to store all the information for these
entries in one .word. A 36 bit word might contain one 17 bit field to index an element in
working memory, an 18 bit field to link this entry to the next entry in the node memory, and
a 1 bit escape field. The escape field is needed for the data parts that hold pointers to more
than 1 data eiement. The pointers to the remaining elements could be stored 2 to a word in

contiguous locations.

6.2 Other Efficiency Measures

The following sections contain a diverse collection of methods for speeding up the nodes.
These methods are not as impo: tant as the representation changes described above, but they

are worthwhile.

143

6.2.1 Difterent Memory Technologies

If data elements are to be copied before they are tested by the one-input nodes, as
suggested in section 6.1.6, the interpreter could be made significantly faster by copying the
elements irto a high speed memory. While it might be too expensive to store all the working
memory elements in a high speed memory, it surely would not be too expensive to store the
one element being processed by the one-input nodes.

6.2.2 Faster Two-input Nodes

The measurements made in the last chapter indicate that when large production systems
are executed, most of the two-input node activations will cause no tests to be performed.
Usually when a two-input node is activated by the arrival of a token on one input, the node
will examine the memory of the other input, find it empty, and passivate itself. This section
describes how the check can be made much faster than it is in the OPS2 interpreter.

If each two-input node carried internally an indication of whether its input memories were
empty, the network interpreter could avoid many unnecessary accesses of the rmemories. It
would be necessary to add two flag bits to each two-input node (one bit for each input
memory). A FALSE bit would indicate that the corresponding memory was empty; a TRUE bit,
that the corresponding memory was non-empty. Before execution of the production system
began, all the biis would be set to FALSE since all the node memories would be empty. Then
during execution, the network interpreter would update the flag bits of each node when the
node was activated. When a token with a VALID tag arrived on one of the inputs, the bit for
that input would be set to TRUE. The arrival of an INVALID token would not in itself be
sufficient reason to set the bit FALSE; the memory might have contained more than just the
cie data part. But since the interpreter would have just examined the memory, it could
easiiy remember whether the memory was emptied and set the bit accordingly.

Not fetching the node memories makes the interpreter faster because it reduces the
number of memory references. If the iwo-inpui nodes are too long to be fetched in a single
memory access, the reduction in the number of memory accesses can be more significant.
The fiag bits could be stored in the first word of the node. The interpreter could examine
the bits as scon as they arrived, and if the appropriate bit was FALSE, it could abort the

fetching of the remainder of the node.

144

6.2.3 Faster Tests at Two=input Nodes

The two-input node programs listed in Chapter 3 perform some operations more times than
they should. In those programs, every time through the inner loop, INDEX is called to extract
both the data subelements to be compared. Since one of the data parts indexed into remains
unchanged throughout the activation of the node (this is the data part of the token that just
arrived at the node) its subelements could be extracted before the loops were entered and
stored in local variables. If the node had many tests to perform, this would reduce the

number of calls to INDEX by almost half.

6.2 Bit Vector Nodes

If computers are to be able to interpret nodes at high speed, the nodes must have an
appropriate representation -- bit vectors. In addition, the nodes must not be longer than
necessary, or memory cycles will be wasted simply fetching the nodes. The foliowing
sections describe a representation that allows the one-input nodes to be held in one 36-bit
word. The representation is somewhat wasteful of bits, but it is simple and therefore more
suitable for exposition than a maximally efficient representatior would be.

6.3.1 Fixed Length Successor Fields

This section shows how the successor fields in the ncdes could be made to have a fixed

length.

The technique used is a standard one for storing trees. Consider a node P which has three

successors, Q, R, and S.

V<—

Q R S

v v {
Instead of storing three pointers in node P, the compiler could store one pointer in P to Q
(say) and a new kind of pointer -- a "brother” pointer -- from Q to R and from R to S. S
would hold an ind.ication that it is the last of the brothers; a null brother pointer would

prcohably be used.

145

VE€Ee—

Q- — —-— »R— — — — 5§
i
y v v
In this way, the variable length successor fieid in each node is replaced by two fixed length
(length one) fields, one fieid for a pointer to a successor, and one for a pointer to a brother

node.

6.3.2 Eliminating the Successor Field

Of the two pointers, successor and brother, one can be made implicit and eliminated from
the node. Suppose the successor field is to be eliminated. If the compiler arranges the
network so that one successor of each node is adjacent to the node, the interpreter can
locate that successor by adding the appropriate offset to the ordinal position of the node.
(The offset is the length of the node.) In the following network, f>r example, nodes A, B, and
C would be adjacent, as would D and E. Nodes C, D, and F would nct nacassarily be adjacent.

The two-input nodes present a problem; since they have two immediate predecessors, ihey
cannot be adjacent to both. One solution to this problem is to store explicit successor links in
all memory nodes (&VEX and &NCT nodes are always preceded by &MEM or & TWO nodes).

6.2.3 Short Successor and Brother Fields

It would be unwise to make the successor and brother fields large enough to allow cnz
node to point to any other node in the network. If very large production systems are
compiled, networks containing 100,000 or 1,000,000 nodes cr more may be built. If the
brother fields were to be able tc point to any of the other ncdes, the fields would have (o
contain more than 20 bits. A brother field 20_bits long might be acceptabie if 48 bits could

146

be allocated for a one-input node, but if the one-input nodes are to be made 32 or 36 bits
(to fit into one word of a contemporary computer) fields of more than about 12 bits cannot

be used.

These short fields can be used if two techniques from miniccmputer design are adapted.
First, the pointer must be interpreted not as an absolute address, but as an offset to be
added to the address of the node containing the pointer. Second, an escape mechanism must
be included to allow longer pointers when they are necessary. One way to achieve this is to
define a new node type which performs no processing and which therefore has unused bits
that can implement a long pointer fieid. For an example of how this ncde would be used,
suppose that L and R are two memory nodes which have the same successor, T; and surpose
that L and R are located so far apart that, regardless of where T is placed by the compiier, L
and R cannct both point to it using their short successor fields. With the indirect pointer
node available, the compiler could place T close to one of the nod2s -- say R -- allowing R’s
successor field to point directly to T, and it could use an indirect pointer between L and
T. The indirect pointer, I, would of course be placed close to L. The fragment of the network,
which in OPS2 would be

| o

L R

<

would become

6.3.4 Short Fields for Constanis

In OPS2 it requires 18 bits to store a constant in an &ATOM node. If the Lisp
representation was abandoned, and integers used to represent atoms, fewer bits would
suffice. To represent K atoms would require only logx(K) bits. The number of bits to allow is

147

difficult tc predict without experience using very large production systems, bul perhaps 10
bits (for 1024 atoms) is reasonable. Consider that the artificial languages Basic English, which
contains about 850 words, and Basic French, which contzins about 1000 words, are sufficient
for much of day-to-day human discourse [40], and that computer programs operaie in a
world which is impoverished indeed compared to that of humans. Certainly the practice of
renaming goals and data could resuit in many made-up words (Movel, Move2, and so on) but
these need not be represented internally as individual words. The interpreter could

automatically convert elements like

(Move3 Blockl to Positiond)

to a form that does not use made-up words; for example,

((Move 3) (Block 1) to (Position 4))

or

(Move 3 Block 1 to Position 4),

If the production system is to allow integers as wel! as literal atoms, the constant fieid wiil
have to be longer than 10 bits. A field of 12 bits might be reasonable; it would allow using
1024 atoms plus integers in the range [-1536, 1535].

6.3.5 The Length of the Table for One~input Nodes

Three factors should be ccnsidered in choosing the size of the table for the expanded data
elements. First, of course, is the length of the data elements. The table need not be big
enough to store the longest elements; if long elements are rare, they can be split into several
shorter elements. (If the interpreter periorms the splitting, the user need not become aware
that the system does not directly support long elements.) The second consideration is the
expense of the indexing operations performed by the two-input nodes. For the sake of
simplicity, it would be preferable to use the same index for a given subelement in both the
one-input and two-input nodes. If the table size is chosen inappropriately, interpreting the
integers with the compact (non-expanded) data representation could involve pertorming
integer divisions. The third consideration is the length of the the nodes® index fields; the the

fields must be shor..

A possible compromise for the three factors is to allow a data element to have 15
subelements, each of which can be an atom or a list of up to 16 atoms. After having seen the

148

measurements in tHe last chapter, the reader might question why so much space has been
allocated to store one data element. The answer is that this format is designed to support
attribute-value data elements as well as list data elements.}! Assuming one of the 15
subelements is used for the name of the object being described, this element format would
allow 14 atiributes, each with a value abcut as complex as a typical OPS2 data element. If 14
attributes were not enough to describe some object, multiple data elements could be used.
Two data elements would allow 28 attributes, three would allow 42, and so on. This format
meets the requirement that the index fields must be short. The table tor the expanded
representation would have 256 slots, and thus only 8 bits would be required for the index
fields. Finally, since the maximum length allowed for the subelements is a power of 2, the
indices can be interpreted cheaply with the non-expanced representation of data. The

algorithm is

1. If the INDEX is B, return the pointer to the top
leve! of the list.
2. 1f the INDEX is greater than 8 and less than 16,
return the first level elemert of that number.
3. Otheruise,
Begin
4, Set HIGH = the high order 4 bits cf INDEX.
5. Set LOW = the iow order 4 bite of INDEX.
6. Use HIGH to select one of the first level subelements
of the element.
7. Use LOW to select one of the subelements of the
embedded list, and return that.
End

6.3.6 The Type Field of the Nodes

The networks constructed by the OPS2 compiler contain ten node types: &BUS, &ATOM,
&LEN, &LEN+, &USER, &VEX, &NOT, &MEM, &TWO, and &P. The &BUS node could be
eliminated, but the other nine are necessary. To implement the binary search for constant
names discussed in Chapter 4 would require two more node types, one to test for constants
names less than some fixed quantity and one to test for constants greater than a fixed
quantity. And finally, one node type is needed tfor the indirect pointer nodes. This gives a

1Appendix 11 shows how a collection of name-attribute-vaiue triples can be represented ss a single data element with
one subelement dedicated to sach attribute. Note that this ropresentation couid ke used internally even if a different
external representation were used.

149

total of twelve node types.z The nodes therefore need foui Lits in their type fields.

6.3.7 Bit Vector One-input Nodes

The one-input nodes contain four fields: a type field, a field for the pointer to the node’s
brother, a field for the pointer into the INDEX table, and an argument field. The argument
field of an &VIN node will contain another pointer into the INDEX table. The argument field of
an &USER node will contain a pointer to the predicate to be evaluated. The argument fields
of the other one-input nodes will contain constants to be tested for. These fields can be
made to fit into one 36-bit word. The length of the type field has already been set at 4 bits,
the length of the argument field at 12 bits, and the length of the index field at 8 bits. This
leaves 12 bits for the brother field, enough to point to any one of 4096 nearby nodes. The

one-input node format is then

Type 4 bits
Brother 12 bits
Index 8 bits
Argument 12 bits

6.3.8 Bit Vector Indirect Pointer Nodes

The indirect pointer nodes contain only two fields, a type field and a long pointer field. If
the type field is the usual 4 bits long, the pointer field could contain up to 32 bits, though the

interpreter might ignore some of them.
Type 4 bits
Pointer 32 bits

6.3.9 Bit Vector Two~input Nodas

A two-input node has seven fields, excluding those containing information about the
variables it tests. Two of these fields already have their lengths fixed. The type field is 4
bits long, and the field indicating whether the memories are empty (the memory status field)
is 2 bits long. Four of the remaining five fields in the node are pointers to other nodes: two

211’ the hash %able nodas were used instead of the bimary search nodes, eleven node types would be needed. It will be
sssumed in this chapter that the binary search nodes are used because use of the hash table nodes would complicate the
calculations presented later in the chapter.

150

pointers to the memory nodes it readsl, a pointer to its left brother, and a pointer to jts
right brother. Since these four pointers certainly cannot be held in 30 bits, the fixed part of
the two-input nodes must be at least 72 bits long. In order to make best use of the memory
status bits, the pointers should be no longer than 15 bits. When the interpreter executes a
node with a zero in the apprcpriate memory status bit, it will use only three fields: the type
fieid, the memory status field, and one of the brother fields. If the pointers were 15 bits
long, all the fields could be held in the first word of the node, and the interpreter could avoid
fetching the remaining words. Four 15-bit pointers plus the type field and the memory status
field require 66 bits. This leaves 6 bits to indicate the number of variables ‘ested, a number
that should be ample. The field that holds this count is called the continuation. The fields ¢
the two-input node, excluding those for the variables, are then:

Type 4 bits

Memory Status 2 bits

Left Brother 15 bits
Right Brother - 15 bits
Left Memory 15 bits
Right Memory 15 bits
Continuation 6 bits

For each variable it tests, a two-input node must have two indices plus an indication of
which test to apply. Each index fieid must hold 8 bits to access subelements, 1 bit to indicate
whether to use these 8 bits in the fast or slow addressing mode {see section 6.1.6), plus
enough bits to indicate which element of the data part to access. 3ince LHSs containing more
than 16 condition elements are rare, 3 bils for this should be enough, but more bits would be
desirable. If 5 bits were allocated, the fields would be:

Variable Type 8 bits
Left Index 14 bits
Right Index 14 bits

Yhe &NOT node will not store its own tokens; it will rely on a memory node.

151

Bv Cer

6.3.16 Bit Vector Mamory Nodes

Memory nodes contain five fields: two successor pointers (see section 6.3.2), a type field,
a brother fieldl, and a pointer into the space where tokens are stored. (Tokens and nodes
surely will not be stored in the same address space in a reasonable impiementation.) The type
field is 4 bits, as always. The three pointers to other nodes can be 15 bits, as in the
twe-input nodes. If two words are allocated for a memory node, 23 bits are left for the
pointer intc token space. This should be far more bits than are needed; even assuming the 4
tokens per production growth rate seen in KERNL1 with the "retry™ productions {see section
- 5.4.2), 23 bits would be sufficient for 2,000,000 oroductions.

Type 4 bits
Brother 15 bits
Left Successor 15 bits

Right Successor 15 bits
Tokens 23 bits

6.3.11 Bit Vector Production Nodes

The production nodes reed contain only two fields: a type field and the name (or number)
of the production. If the type field is the usual 4 bits, the name field could contain up to 32
bits:

Type 4 bits
Name 32 bits

6.4 A Machine to Directly Interpret Rete Networks

This section is the heart of Chaplter 6. It demonstraies the usefulness of the
representations described in the first three sections. It argues that these representations
make the task cf interpreting nodes so simple that a very slightly modified conventional
processor could interpret nodes as fast as it interprets conventional instructions.

1The brother field is not strictly necessary. Since memory nodes do not test or modify the tokens they receive, they
could "adopt"” their brothers, making them their inmediate successors. Keeping the brother pointers was deemed simpler,
howsaver.

152

6.4.1 Comparing One-input Nodes to Conventional Instructions

Before discussing the special hardware ihat is needed to interpret Rete networks, it is
worthwhile to compare nodes to the instructions of conventional computers. The comparison
between a node and a conditional branch instruction is most instructive.

The PDP-10 instruction set includes an instruction with the mnemonic name "CAIN"
{Compare Accumulator Immediate and skip if Not equal) which is much like an &ATOM node. A
CAIN instruction contains an 18 bit constant and a register designation. It compares the
constant to the contents of the register, and if the two are not equal, it causes the machine

to skip the following instruction.

In its gross characteristics, the &ATOM node is similar. Both have constant fields. Both
have fields that point into blocks of high speed registers. Both allow the foilowing instruction
(node) to execute only if the constant field is equal to the datum held in the register.

The differences .between the two are principally detail differences. The CAIN instruction
contains more fields, though the fields other than the ones holding the type, register, and
constant are seldom used. The fields in the CAIN instruction do not have the same lengths as
the fields in the &ATOM node. The &ATOM node has one implicit and one explicit pointer te
other nodes, while the CAIN instruction has two implicit pointers to other instructions. The
one difierence between the two which cannot reasonably be called a detail is that the &ATOM
node sometimes allows both the nodes it points to to be executed.

Similar comparisons (with similar resuits) could be made for the other one-input nodes.
The &VIN node is like a compare of two registers -- achieved with the "CAMN" (Compare
Accumulator to Memory and skip if Not equal) instruction on a PDP-10. With the
representation of data elements suggested in section 6.1.1, the &LEN node is like the CAIN
instruction; the &LEN+ node is like the instruction called "CAIL" (Compare Accumulator

Immediate and skip if Less).

6.4.2 Special Hardware for the One-input Nodes

Since one-input nodes are similar to some existing instructions, most of the hardware
necessary to interpret the nodes should already be present in a general purpose computer.
In order to deiermine what other hardware might be necessary, this section examines every

difference between the one-input nodes and the compare instructions.

The first difference is that the one-input nodes require a larger block of high speed
registers. If the tabular representation suggested in section 6.35 is adopted, 256 registers

153

are required, compared to the 8 to 16 that are commonly used in a general purpose

computer.

That a one-input node contains fewer fields and contains fields of different lengths would
not make any special hardware necessary, provided the conventional instructions were
interpreted by a general microprocessor. Microprocessors that are designed to interpret
more than one inst}uction set usually contain flexible hardware for fieid extraction.

That a one-input node contains an explicit pointer to its brother might make some special
hardware necessary. After this field is extracted from the word, it must be tested to
determine whether it is nwull, and if it is not, the address of the brother must be computed
from tne field contents plus the address of the node being executed. One could program this

on a micreprocessor, but it would be faster if special hardware were available.

The final difference, that it is sometimes necessary to activate both successors of a node,
makes it necessary to maintain a stack of node addresses. Clearly when both successors are
to be activated, one address must be stored temporarily. The reason for using a stack is to
minimize the amount of information that must be stored at any time. If nodes are executed in
2 depth-first manner (i.e., activating the successor of a node before the brother) the number
of addresses stored can never exceed the number of nodes in the longest path through the
network. Since the iength of the longest path depends on the complexity of the individual
LHSs, and not on the number of LHSs, this stack need nct be large. It could therefore
economically be held in a high speed memory. One might want to inciude special hardware to
maintain the stack -- something to push addresses onto the stack and something to watch for

stack overflow.

6.4.3 Specia! Hardware for the Two=input Nodes

No special hardware would be required to interpret the iwo-input nodes. The necessary
hardware -- for field extraction, for bit testing, and for computing and stacking brother
pointers -- must already be present to interpret the one-input nodes.

Neither is special hardware necessary to perform the tests at the two-input nodes. The
functions of extracting fields, accessing primary memory, and comparing integers would be

provided by any general microprocessor.

One piece of hardware would be necessary, however, to allow control to pass between the
two-input nodes and their successors. If the OPS2 algorithm is adapted for the machine, the
two-input nodes will require ancther small biock of high speed registers for their use. Each

cmndlime

incarnation of a two-input node maintains a few iocal values (see secticn 6.2.3). When a node

154

 is suspended after outputting a token so that its successors can process the token, these
values must be stacked. This stack can be small since most LHSs contain only a few condition
elements and and a few variables. (The stack need not be large enough to handle every
possible case; parts of the stack can be moved to primary memory on the extraordinary

cases.) |

6.4.4 Special Hardware for the Memory Nodes

No special hardware is required for either the memory nodes or the tests performed by
the memory nodes. Interpreting the nodes themselves involves no operations not also
needed to interpret the one- and two-input nodes. The same is true of the fetching and
 testing of elements in the memories. The task performed by a memory node, maintaining a
linked list in primary memory, requires only the ability to read from and store into primary

memory.

6.4.5 Special Hardware for the &P Nodes

The &P nodes are executed so infrequently that special hardwars seems unjustifiable.

6.4.6 Special Hardware: Conclusion

In summary, the only special hardware needed is (1) a quantity of high speed memory; (2)
the hardware to interpret the brother fields; and (3) the hardware to maintain a stack. To
perform the last iwo functions it is necessary to have a comparator to determine if the
brother field is null and a register that can be incremented and decremented by one (to hold
the pointer tc the top of stack). No adder weould be needed to compute the address of the
brother; it would be sufficient simply to concatenate the high order bits of the current
address to the brother field. The high speed memory is needed for the INDEX table for the
one-input nodes, for the stack of pending nodes, and for the stack of the two-input nodes’
locals. Section 6.35 discussed the length of the table for INDEX and concluded that 256
words should be sufficient. If the LHSs of productions are as complex as those in the three
measured production systems, 64 words for each of the stacks should be ample.

The high speed registers are the only items in the list that are important. If the high
speed registers were not available, the number of references to primary memory weculd
increase several fold. If the other hardware were not available, a few more microinstructions

would be executed in interpreting each node.

There was, however, a reason for inciuding the hardware: to allow arguing that, with the
special hardware, 'the processor would be able to interpret one-input ncdes as fast as it

155

interprets conventional compare instructions. With the hardware, the steps involved in
interpreting the two are nearly identical: extracting a constant from a field in the instruction;
retrieving a value from a high speed register; comparing the two; and then choesing which of
two instructions to fetch rext based on the outcome of the comparison. In one case, the
choice is made by conditionally adding one to the program counter; in the other case the
choice is made by conditionally loading the program counter with the value in the top of the
node address stack. But surely neither of these is appreciably slower than the other. The
computing and stacking of the brother address, which has nc analogue in the interpretation of
the compare instruction, is performed in parzllel with the other steps. Thus unless the
hardware for the stack is quite slow, it will add nothing to the time required to interpret the

node.

€.5 Estimating the Performance of a Rete Machine

This section contains some calculations that can be used to evaluate the hardware just
described. Subsection 65.1 contains an estimate of the relative speeds of four machines
which have varying degrees of hardware support for the match algorithm. The rest of this
section is devoted to calculating how fast a few representative production systems would run

on machines with all the hardware described above.

6.5.1 The Time Required to Execute a One-input Node

Calculations are made in this subsection to determine how fast a KL10-sized processor
could execute four implementations of cne-input ncdes. Concidered are (1) the OPS2 Lisp
implementation, (2) an assembiy ianguage version using the tabuiar representaticn of data
2lements, (3) a microcoded version using the same representation, and (4) a processor with
the special hardware described above. The reason for considering only one-input node times
is that these iimes have predictive value. Since the one-input nodes will account for ever
more of the total execution time as production systems grow larger, the relative times -
computed here are reasonable estimates of the ultimate relative times for the entire match.

The measurements repcrted in Chapter 5 were made on a KL version of a PDP-10. Since
this machine has a cache, to compare single node times on this machine would be difficult and
potentially misleading. The time required to execute a node could vary by several hundred
percent depending on whether the node happened to be in the cache. This problem will be
avoided by hypothesizing a machine which runs Lisp as fast as a KL10, but which does not
have a cache. This hypothetical machine should have a memory bandwidth of 2.1 million

-

156

words per second, and it should be able to execute 1.25 million instructions per second.!

The speed of the Lisp version can be esiimated from the data in Chapter 5. Including the
time for one call to INDEX, the three production systems measured in Chapter 5 required 346
microseconds (KERNL1), 316 microseconds (HAUNT), and 326 microseconds (PH-632) to
execute a one-input node. The average of these three is 329 microseconds.

To estimate the speed of the assembly language version, code was written for the part of
the interpreter needed to execute &ATOM nodes (see Appendix II). The time required to
execute the instructions on a KA1QO processor was criculated from published information
about the processor [15], and the time was adjusied to reflect the higher speed of the
hypothetical machine. The result is that the nude wouid take about 11 microseconds to

execute.

If the microprocessor of the hypothetical machine has the usual field extraction and
comparison capabilities, the microprogrammed interpreter should be able to execute the
nodes at memory speed. Executing a one-input node requires 3 memory references (1 to pop
the node’s address off of the stack, 1 to fetch the node, and 1 to fetch the datz subelement
tested by the node). Thus an &ATOM node would require about 1.4 microseconds to execute.

As argued in sectiorn 6.4.6, a one-input node should be as fast as a conventional compare
instruction if the special hardware is available. Executing a CAIN instruction on a KA10Q takes
about 2 microseconds. Therefore, on the hypothetical machine a ore-input node would take
about 05 microseconds. Note that the same value results from counting memory references;
executing a one-input node requires one memory reference, or about 0.48 microseconds on
the hypothetical machine.

The following table summarizes the comparison made in this sectio~.

 These values were determined as follows. Experiments were run which showed that Lisp on 8 KL10 is 4.2 times
faster than Lisp on a KA10. Published results of KA1Q performance measurements indicate that it has an effective
processor-memory bandwidth of about 05 million words per second and that it can porform stsut 0.3 million
instructions per second [23). Multiplying these values by 4.2 gives 2.1 million words per second bandwidth and 1.25
million instructions ner second execution speed.

157

Time Relative_Time
Microcode
Plus Special
Hardware 0.5 usec 1
Microcode 1.4 psec 3
Assembly
Language 11 psec 20
Lisp 329 psec 700

Table £.1. One-input Node Implementations

6.5.2 Time Costs of tha Nodes

The remainder of this section is devoted to calculations of the total match times for several
typical production systems running on the hardware described above. Before these
calculations can be made, it will be necessary to estimate the time costs of the various
operations performed by the network interpreter. Making these estimates will not be difficult
if one assumption is allowed: that the speed of the machine depends directly on the number
of primary memory accesses made. This seems a reasonable assumption; since the processing
perfcrmed by the nodes is simplc, a processor of even moderate power would probably be

limited by memory bandwidth.

If the special hardware described above is available:

- Activating a one-input node requires one memory reference (to fetch the node).

- Activating a two-input rode requires one memory reference when the memory
status bit is false. This should be the mcst common case in large production
systems. But when the bit is true, one more reference must be made to fetch
the second word of the node, one reference for each variable-describing part of
the node, one reference to extract the memory pointer from the memory node,
and at least one reference for each variable to extract the subelements from the
token.

- Activating a memory node requires two memory accesses, excluding the ones
necessary to search and modify the node memory. Searching the node memory
is accounted for in the cost of the memory tests. Modifying the memory, which
is necessary only if the token is tagged VALID or INVALID, might require two
more memory accesses if the free words are kept on a linked list.

- Performing a test at a two-input node requires cne memory reference to fetch

158

the data subelement unless the slow form of indexing is used. Since most
condition elements do not contain |}, fast indexing should be more common. If the
typical two-input node tests one variable, following the links in the memory
node’s iist of data parts will add one memory access per test. If the two-input
node tests more variables, following the links will add proportionately less
overhead.

- Performing a test at a memory node requires one memory reference if the data
parts contain only one data element.
The &P nodes are not mentioned because the rrocessing performed by those nodes is not a

significant part of the total.

6.5.3 KERNL1 on the Rete Machine

The following is an attempt to estimate how fast the Rete machine would perform the
match for the 346 production version of KERNL1 (the slowest production system measured in .
Chapter 5).

Table 5.6 shows that processing the average action involved 78.8 activations of one-input
nodes, 23.8 activations of two-input nodes, 715 tests perfcrmed by the two-input nodes,
125 activations of memory nodes, and 170 tests performed by the memory nodes.

The number of memory references during the match can be estimated from the information
given in the last section. To make the estimate conservative (i.e, almost ceriainly an

overestimate)

- Assume that every test performed by a two-input node uses slow indexing.
Since the average data element contains just over 1 nested iist (see table 5.3)
estimate that indexing requires 2 memory accesses. FPericrining the test thus
requires 3 accesses (1 to follow the links in the node memory plus 2 for the
indexing).

- Assume that 3.8 of the two-input node activations invelve performing tests. The
number cannot be greater than 3.8 because the same 715 tests were pertormed
when only 3.8 nodes were activated (the run of 56 productions). Since the
average two-input node performs about 1 variable test, activating one of these
two-input nodes requires 6 accesses (2 for the node itseif, 1 for the variable
part of the node, 1 to reach the memcry node, and 2 to index into the data part
of the token).

- Assume that every node is tagged VALID or INVALID, and that 2 memory
references are reguired tc take a word from the free storage list or to put a
word onto the free storage list. Then activating a memory node requires 4
accesses.

The total number of memecry accesses is then

159

556 =788 % 1 (One-input nodes)
+20+]1 +38=%*6 (Two-input nodes)
+715%3 (Two-input tests)
+125=24 (Memory nodes)
+ 170+ 1 (Memory tests)

On a Rete machine with an effective processor-memory bandwidth of 2.1 million words per
second {the equivalent of a KL10) the match for KERNL1 would require about 265
microseconds. The match required 111 milliseconds in OPS2, so the Rete machine would be

more than 400 times faster.

This increase in speed would ke accompanied by a substantial reduction in the size of the
compiled LHSs. The 346 production system had about 1675 one-input nodes, 346 two-input
nodes, 410 memory nodes, and 346 &P nodes. Assuming that the average two-input nodes
tests 0.9 variables (this is the figure from section 5.3.4) then with the node format described
in this chapter, the nodes for these 346 productions would occupy about 3800 words. In the
OPS2 format, these nodes occupy about 16,600 words. The new format thus requires less
than one-fourth as much space. This new format also requires iess space than the
uncompiled form of the LHSs. Uncompiled, these LHSs concume about 8700 words.

6.5.4 A Larger Production System

Since it will eventually be necessary to run much larger production systems than KERNL
or HAUNT or PH-632, this subsection estimates the time and space costs of executing these
larger production systems. It is assumed here that the productions in the system are about
as complex as those in KERNL!, because this allows the results of the last subsection to be

used.

The space costs are easy to compute since the size of the network is a linear function of
the size of the production system. The 346 production version of KERNL1 required about
3800 words for its network, so each production required about 11 words. Thus if a
production system contained 10,000 productions, its network would consume about 110,000
words. If a production system contained 100,000 productions, its network would consume

about 1.1 million words.

Determining the time costs of the larger production systems is less easy, since, as Chapters
4 and 5 showed, the costs of the different match operations scale differently. One simple,
but slightly pessimistic way to resolve the problem of scaling is to assume that the number of
two-input tests does not increase and that all other operations increase with the logarithm of
the number of producticns. The count of memory references made in the last subsection ¢~

160

then be used to estimate time costs. Of the 556 memory references rieeded to perform the
match for the 346 production system,

3.8%6 + 71.543 = 237
were performed to effect the two-input nodes’ tests, and the remaining 319 were performed
for other reasons. The cost of the match (measured in memory accesses per RHS action) for
a system with P productions could therefore be estimated by

237 + 319log(P / 346).
If the system contained 10,000 productions, this expression wouid evaluate to about 1800.

It is worth noting that in Chapter 1 it was eslimated that a production system would have
to perform about 1000 RE3 actions per second to equal Lisp on a KL10. Since the KL10 has
a processor-memory bandwidth of 2.1 million words per second, it appears that a
KL10-equivalent machine with the extra hardware described in this chapter could execute a
rather large preduction system at this rate or faster. A system with 10,000 productions, for
example, would require about

1800 #* 1000 = 1.8 miilion
memory references for the match, leaving about 0.3 miilion references per second for conflict
resolution and the RHS actions. If the RHS actions were compiled, this would be quite
adequate for a production system like KERNLI.

6.5.5 Production Systems on Minicomputers

Since there is some interest in running production systems on minicomputers (see, for
example [3, 4)), this subsection contains a estimate of the execution speed of a minicomputer

with the production system hardware.

The calculations will assume that the computer is a PDP-11/40 [16], a microprogrammable
machine, but one which has rather modest performance by today’s standards. The
PDP-11/40 is a 16-bit machine, and it has a processor-memory bandwidth of about C.9 miilion
16-bit words per second. These 16-bit words are less than half the size of a PDP-10 word,
but since the node formats of this chapter are not particularily efficient in their use of bits,
two PDP-11 words could prabably be used in place of one PDP-10 word.

On a PDP-11/40, then, the 246 production version of KERNL1 would require

2 * 3800 = 7600

161

words for the network, and processing each RHS action would entail about

2+55€6 =1112"
memory references. Since the P -11/40 has a bandwiain of about 0.9 million words per
second, even if 207 of its time was spent evaluating RHSs and performing conflict resolution,
it should still be able to perform more than 600 actions per second.

The principal limitation of the PDP-11 is that it has a small address space. It is difficuit to
have a data structure that extends over more than 32,768 words. Since each production’s
LHS would compile into about 22 words, this would be enough for only about 1500
productions. Using the same scaling assumptions as the fast subsection, a system of 150C
productions would require about 1800 memcry accesses per RHS action. An 11/40 sized
machine should thus be able to execute a 1510 production system at at least 400 actions per

second.

Finally, since a machine with microcode but no special production system hardware would
run about 3 times slower, an unmodified PDP-11/40 should be able to run the 1500
production csystem at more than 130 actions per second and the 346 production system at

more than 200 actions per second.

6.6 Parailelism

With the hardware enhancements suggested in this chapter, an otherwise conventional
processor could perform tests at one- and two-input nodes as fast as it could execute
conventional instructions. This section is concerned with the possibility of obtaining still

faster execution.

First it should be pointed out that a few of the techniques commonly used by computer
architects to speed up uniprocessors can be used for the network interpreter. Since the
Rete Match Algorithm is memory limited, none of the techniques for speeding up ihe
processor alone is useful. Thus the algorithm is not amenable to techniques like putting more
data paths in the machine, pipelining the processor, or using special functional units. The
techniques for achieving high processor-memory bandwidths are certainly potentially useful,
however. For example, the measurements made in Chapter 5 indicate that making the memory
wider would improve the performance when very large production systems are run. Adding a
cache might also improve performance, but, as mentioned in Chapter 5, this cannot be
determined conclusively until larger production systems can be measured.

While some of the uniprocessor technigues are feasible, the performance of the Rete Match

162

Algorithm could more easily be improved through the use of parallelism. For instance, there
exist two reasonable ways to use low degrees of parallelism. The first is to store the
network in a memory that can be accessed by all the processors, and to allow the processors
to fetch and execute nodes in parallel. The second is to execute many small networks in
parallel. In this method, a production system is divided into a number of smaller systems, and
each of the smaller systems is compiled into a separate network. One processor is assigned
to each network. The advantage of this method is that the overhead of synchronizing the
processors would be small; synchronization would be needed only when the processors tried
to update the conflict set. A disadvantage is that shering of nodes is reduced, resulting in
more space being used to store the network, and more operations being performed on each

cycle.

To use the very high levels of parallelism promised by VLSI (very large scale integration)
another technique is necessary. With continuing advances in semiconductor technology,
computers containing thousands, or even millions, of processors may be feasible in a few
years. Such computers would be Qtremendously powerful; assuming the processors are only a
few times faster than today’s one-chip computers, one million processors could perform a
trillion operations per second. Programming these computers, however, will be diffiéuit.
Besides the obvious difficulty of dividing a problem into enough small units, the programmer
wil! prcbably be faced with severe limits on communication. Almost certair'y it will not be
possible to send information between arbitrary pairs of processors cheaply (consider llliac 1V,
and its problems with only €4 processors). There is a way to use the Rete Match Algorithm
that avoids both of these problems. The production system could be compiled into a single
network as in the serial processor implementations. The network could then be divided into
regions containing only a few nodes each, and the regions assigned to different processors.
With this organization each processor would communicate with only a few others (those
whose nodes were successors or predecessors cf its nodes). The organization obviously has
the potential for extrememly high degrees of parallelism; the {imit would be one processor for

each node in the network.

163

7. Conclusions

The goal of this research has been to develop means for interpreting large production
systems efficiently. The research has considered both the algorithms used by the interpreter
and the hardware on which the algorithms run. The fellowing section reviews the body of
the thesis, discussing the contribution of each chapter to the goal of efficiency. The last
section then presents a fzw suggestions for further research.

7.1 Summary of Frevious Chapters

Chapter ' introduced the problem attacked by this research: how to make pattern
directed invocation of productions more efficient. Current production system interpreters
often spend more than nine-tenths of their time evaluating patterns for this purpose, and
since production systems are growing larger, the fraction of the time spent in evaluating the

patterns is increasing.

Chapter 2 described the Rete Match Algorithm, an algorithm for performing this pattern
evaluation. The chapter began by defining two properties of the match that make it possible
to design efficient algorithms. The first of these, structural similarity, is the property that
much commonality exists among the various patterns. The second, temporal redundancy, is
the property that the working memory of a production system generally changes slowly from
one cycle to the next. The Rete Match Algorithm takes advantage of structurzl similarity by
compiiing all the patterns into a single rotwork of tests, with sharing of subnetworks usad
when possible. It takes advantage of temporal redundancy by storing all the ‘nformation
about matches and partial matches of productions from one cy<le to the next. The aigorithm
described in this chapter can be implemented on both serial and parallel computers, and it is
suitable for a broad class of producticn systems.

Chapter 3 described the OPS2 interpreter, the most recent interpreter to use the Rete
Match Algorithm. The interpreter’s programs and the data processed by the programs were
described in enough detail to allow the reader to reproduce the interpreter. The algorithm in
Chapter 3 is more efficient than the one in Chapter 2 because it has been specialized for one
language (OPSZ2) and for implementation on a serial machine. The two change: that were
necessary to effect this specialization are independent, so the reader should be able to infer
how to construct another interesting interpreter: one fot & wide class of languages, but

specialized for a serial machine.

Chapter 4 contained an analysis of the OPS2 algorithm. This analysis determined how the
time and space costs of the algorithm depend on the number of productions in production
memory and the number of data elements in working memory. Expected dependencies were

164

determined as well as the usual best and worst case dependencies. To determine the
expected dependencies it was necessary to examine the programming conventions used in the
construction of large production systems. It was shown that two of the conventions strongly
affect the efficiency of the interpreter: (1) putting a condition element that matches goals
first in the ccrdition part of each production, and (2) using RHS actions that encode
information so that other productions cannot recognize it. The results of the analysis are
shown in ‘ables 4.1 and 4.2 on page 106. In the course of performing the analysis it was
discovered that the OPS2 aigorithm was not properly designed to take advantage of the
above programming conventions, and that this improper design caused the expected time cost
to be a linear function of the number of productions in the system (i.e, C(P)). Two simple
modifications of the algorithm were described, either of which would reduce the dependency
from O(P) to O(logy(P)). Chapter 4 showed that Oflog,(P)) is the best that can be achicved
by any algorithm.

Chapter 5 described the results of experiments that were performed on the OPS2
interpreter while it was running the three largest OPS2 production systems. These
production systems contained, respectively, 316 productions, 381 productions, and 1017
oroductions. One group of experiments were performed to determine the effects of
production memory and working memery sizes. The results verified the analysis of Chapter
4, and produced numbers to supplement the order results of Chapter 4. Another group of
experiments were performed to determine whether the algorithm would execute efficiently on
computers besides ordinary uniprocessors like the one OPS2 is implemented on. The results
indicated that the algorithm would be efficient on paraliel computers and on computers that
fetch several words on each memory access in order to improve their processor-memory
bandwidths. Whether the algorithm would be efficient on a compuier with a cache couid not

be determined.

Chapter 6 considered the question of whether the Rete Match Algorithm could be made
significantly more efficient through the use of specialized hardware. The chapter first
explained how {o speed up the match prccess by eliminating most of the references to
primary memory and by reducing the amount of processing performed by the nodes.
Referernces to primary memory were to be reduced by making the nodes smaller (a possible
format was shown) and by storing the data elements in a form that allowed subelements to be
accessed in a single memory reference. Processing requirements were to be reduced by
storing expiicitly the information which the nodes test. These changes would allow
production systems to be executed about one order of magnitude faster than the speed of
current interpreters. Chapter 6 next considered whether special hardware would improve
the efficiency further. It concluded that large increases in speed would result from the use
of a very e<-all amount of special hardware plus a few hundred words of microcode.

165

Calculations were made which showed that a machine with this special hardware would run
preduction systems about two and one-half orders of magnitude faster than current
interpreters. Microcode alone would provide 2 speed increase of about two orders of

required to store the productions. When LHSs are compiled into the representation described
in this chapter, they decrease in size by a factor of about two.

7.2 Future Research

The obvious continuation of this research is to develop other ways to reduce the cosi of
running production systems. Several possibilities exist for achieving further reducticns,

including:

- Compiling the RHSs. This would resuit in a substantial reduction in the space
required to store the productions. But more important, if the match is made two
orders of magnitude faster and this is not done, the act phase of the cycle will
become the dominant factor in the time cost. Fortunately, compiling the RHSs
would be quite easy; aimost no research is needed here.

- Use of secondary memory. This could significantly raduce the amount of primary
memory used to store the production system. Much research may be required,
however; it is not at all clear now how the productions could be paged without
slowing the execution excessively. Perhaps the interpreter couid extract

. predictive information from the explicit links between nodes and the implicit links
between &P nodes and RHSs.

- Language design. More work in language design might bring about greater
efficiency in ali areas. It might be pnssible to design new production system
languages that are easier to interpret, that require fewer production firings to
perform typical tasks, or that require fewer productions in the system, thus
reducing the cost of storing the system.

Another possible continuation of this research is to work on applying the techniques to
other languages. Performing pattern matching is often a major part of the cost of running a
large Artificial Intelligénce program. While the methods developed here might not bz as
eifective as they are for production system interpreters, they might still provide substantial

cost reductions in many cases.

166

167

I. Comparing Production Systems to Other Programs

The following is an attempt to determine {1) how many lines of a conventional high level
language like Lisp or saill are required to equal ore production and (2) how many RHS
actions must be performed each second if a production system is to equal the speed of a Lisp
or Sai! program. The data on which the calculations are based come from Rychener [47, 48]
and McCracken [31]. Both Rychener and McCracken used a PDP-10 model KA (a "KA10") as
the performance standard. Their original figures are used here, but the final results are
converted to use a model KL as the standard. A KL10 is about 4.2 times faster than a KA1Q;
a KL10 executes about 1.3 million instructions per second when running Lisp.

Two comments about the methods employed are in order. First, even though Rychener and
McCracken recoded a total of seven programs, only four are listed here. The other three
programs were omitted from the calculations because the production system versions of
these programs differed too greatly from the original versions. Second, the calculations are
probably unfair to the preduction systems. When it was necessary tc convert a range of
numbers to a single number, the number that was leasi faverable tc the producticn system
was chosen. The reason for doing so was to insure that if performarnce standards for

production sysiem interpreters were based on these numbers, they would be stringent
standards. '
Rychener found that a production system version of GPS [36, 18] ran about 20 times

slower thzn z Licp version of the same program. The production system, which was called
GPSR, required from 95 to 185 milliseconds to perform one working memory change. Thus to
equal the perforr—nance of of the Lisp version, the production system would have to perform a
working memory change in about

95 / 20 = 4.8 milliseconds.
To equal the speed of Lisp on a KL, ihe production system would have to perform an action in

4.8 |/ 4.2 = 1.1 milliseconds.
The production system contained 206 productions, and the Lisp program contained 616 lines
of code. Thus each production is the equivalent of about 3 lines of Lisp:

616 / 206 = 3.0

leor e description of Sail, see [56] For a description of Lisp, see [6C, 53}

168

These figures are somewhat misleading as the production system had more general abilities

thar the Lisp program.

In a comparison of a production system version of STUDENT [6, 7] and the original
program, Rychener found that the production system, which performed an RHS action in about
160 milliseconds, was about 20 to 30 times slower than the Lisp program. To equal the
performance of the Lisp program, therefore, the production system would have to perform an

action in

160 / 30 = 5.3 milliseconds.
To equal the performance of Lisp on a KL10, the production system would nave to perform an

action in

5.3 / 4.2 = 1.3 milliseconds.
The production system contained about 260 productions. The original program contained

about 290 Meteor rules.1 -

290 / 260 = 1.1

Rychener had a production system version of a part of the SHRDLU system [61], but the
timing information from that production system cannot be used here. The times given for this
production system all include the run time of another production system. The size of the
system can be used, however. The production system, WBLOX, required 130 productions to
perform essentially the same function as 905 lines of Lisp and I\Airtl'o—planner2 in SHRDLU.

905 / 130 = 7.0.

McCracken found that HSP, his production system version of Hearsay-II [17, 30], ran 255
times slower than the original Sail version. A run that required 3.6 seconds in Sail required
917 seconds in the production system. A total of 380 working memory changes were mace
during this run, giving an average of 2.41 seconds per change. The performance of the Sail
version could thus be equaled by a production system that performed actions in

2410 / 255 = 9.5 milliseconds.

IMeteor was an extension to Lisp; it was inspired by the siring processing fanguage Comit [62].

%For 3 doscription of Micro-planner, ses 55, 5]

169

To equal the performance of the SAIL program on a KL19, then, the production system would

have to perform an action in

9.5 / 4.2 = 2.3 milliseconds.
In comparing the two programs, McCracken stated that the 310 SAIL statements in the POM

subprogram translated into 48 productions.
310 /48 =65.

The results of this appendix are summarized in the following tabie.

: Production KL10 Equivalent
System Equivalent Time for Action
GPSR >3 lines of Lisp >1 msec.
STUDNT 1 Meteor rule 1 msec.
WBLOX 7 lines of Lisp n. a.

and Micro-planner

HSP 7 lines of Sail 2 msec.

Table i.1. Production Systems vs. Conventional Programs

170

ll. Generaiity of OPS2 Data Elements

The purpose of this appendix is to demonstrate the generality of OPS2’s data elements
(and thus to show indirectly the generality of the mechanisms used in OPS2’s implementation).
Several examples are given here te show that purely mechanical transformations can be
applied to other representations to convert them into the OPS2 representation. Most of the
representations used in Artificial Intelligence programs belong to one of two classes, sets
(sometimes generalized in some way) and colored directed graphs. These two classes include
alf the representations used in the pure preducticn systems. A few representations from
each class have been chosen, znd the transformations that might be applied to the
representations described below.

To represent a set iike

{A 17 orange}

one might choose a name for the set and store each member of the set in a separate data
element.

(Set1l member A)
(Seti member 17)
(Set1l member orange)

A common generalization of the set is the "bag", which allows multiple occurrences of
objects. The contents of a bag, like those of a set, are unordered.

{A 17 orange 17}

A bag can be represented in OPS2 by constructing a separate data element for each distinct
object. The data element can contain a count cf the number of times the object appears in

the set.

{Bagl member A 1)
(Bagl member 17 2)
(Bagl member orange 1)

The simplest colored directed graph is one that uses only one colcr for the edges. A
common example is a string, which is a collection of characters with a "next” relationship

between pairs of characters. The string

oTYF

171

next next next

This string could be stored in OPS2 in several ways. If operations or the individual
characters were to be performed, one would probably want to store each character in a
separate data element. This would require creating a name for the string and a name for

each character in the string.

(Head Stringl G0276)
(G0276 0 (NEXT G0O277))
{60277 T (NEXT G0278))
(Go278 T (NEXT G0279))
(G0279 F (NEXT))

Name-attribute-value systems also belong to the ciass of colored directed graphs. These
systems contain a few ncdes (objects) with many edges going out from them. The colors of
the edges are the attributes, and ihe nodes at the ends of the edges are the values. Often
the node from which the edges leave is unnamed because the object is known only by its
description. The following, for example, is adapted from Anderson and Gillogly [2}

Type Site

ID Rand-11
Operating-system=-name UNIX
Machine-type PDP-11/45
Guest-account-name Netguest
Guest-accaunt-password Netguest
Known-user-set (JJS RHA RSG)

This describes some unnamed site on the ARPA ret. One way to represent it in OPS2 is to
choose 2 name for the site and to put each name-atiribute-vaiue triple into a separate data

element.

(Host199 Type Site)

(Host199 ID Rand-11)

(Host123 Operating-system-name UNIX)
(Host199 Machine~-type PDP-11/45)
(Host199 Guest-acccunt-name Netguest)
(Host199 Guest-account-password Netguest)
(Host199 Known-user-set (JJG RHA RSG))

172

Another way to represent this information in OPS2 is in a single list. 1f one knew before
writing the production system precisely how many attributes would be needed to describe
sites, one couid number the attributes and use lists with that many elements. The first
position in the list would hold the value of the first attribute, the seccnd position would hold
the value of the second attribute, and so on. The above site could then be represented by

(Site Rand-11 UNIX PDP-11/45 Netguest Netguest (JJG RHA RSG))

173

lil. Assembly Language Version of &ATOM

The following is an assembly language version of the part of the OPS2 interpreter that
would be needed to interpret &ATOM nodes. The first set of instructions beiow fetches and

decodes nodes. The second set executes &RATOM nodes.

¢ Fetch the node and decode it

MAI N:
INTER:?

TABLE!

POP RPEND, RADDR
MOVE RNODE, (RADDR)
MOVE RTEMP, RNODE
ANDI RTEMP, 1017
JRST TABLE(RTEMP)

JRST STACKEMPTY

* JRST ATOM

JRST LEN
JRST LEN+

JRST RESERVED

s Node program &ATOM

ATOM:

ATMNB:

L.DB RTEMP, PTRBRO

JUMPE RTEMP, ATMNB

ADD RTEMP, RADDR

PUSH RSTACK, RTEMP

LDB RTEMP, PTRCONST

TORI RTEMP, ATOMTYPE
LDB RINDEX, PTRINDEX
CAME RTEMP, ELEM(RINDEX)
JRST MAIN

A0JA RADDR, INTER

0 S0 9

.0

e 9o eo e

>

-

WO 90 €0 98 9o 90 98 €0 O» er

Pop the next address
Get the node
Begin to get tygpe field

Decode the type fieid

TYPE = O
TYPE =
TYPE = 2
TYPE = 3
TYPE = 15 decimal

Extract brother fiecld
NG birother

Use field as offset
Push the address
Extract constant field
Add type bits for atom
Extract the index field
Make the test

Failure

Advance zddress to son
& jump into interpreter

174

The foliowing is the program that was shown on the previous page. The instructions are
marked with the time (in microseconds) that they would take cn a KA1O processor. The
instructions without time marks are usually skipped when an &ATOM node is executed. The
times assume that the processor has one of the faster avaiiable memories, one with a 1.0
microsecond cycle time and a 0.61 microsecond access time The total time required is 4551
microseconds. The hypothetical machine from Chapter 6 is about 4.2 times faster than a
KA10; thus on that machine, the total time would be 10.8 microseconds.

¢ Fetch the node and decode it

MAI N: POP RPEND, RADDR (3,33 usec)
INTER: MOVE RNODE, (RADDR) (2,87 usec)
MOVE RTEMP, RNODE (1,73 usec)
ANDI RTEMP, 1617 {1.73 usec)
JRST TABLE(RTEMP) (1,87 usec)
TABLE: JRST STACKEMPTY
JRST ATOM (1,58 usec)
JRST LEN
JRST LEN+
JRST RESERVED

s+ Node program SATOM

ATOM: LDB RTEMP, PTRBRO (11,22 usec)
JUMPE RTEMP, ATMNB (1,91 usec)
ADD RTEMP, RADDR
PUSH RSTACK, RTEMP

ATMNB: LDB RTEMP, PTRCONST (7.62 usec)
TORI RTEMP, ATOMTYPE (1,73 usec)
LDB RINDEX, PTRINDEX (5,22 usec)
CAME RTEMP, ELEM(RINDEX) (3,10 usec)
JRST HAIN (1,59 usec)

ADJSA RADDR, INTER

175

References

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, MA, 1974.

2. J R Arderson. Language, Memory, and Thought. Lawrence Erlbaum Associates,
Hillsdale, NJ, 1976.

3. R. H. Anderson and J. J. Gillogly. Rand Intelligent Tarminal Agent (RITAX Design
Philosophy. Technical report, The Rand Corporation, 1976.

4. R. H. Anderson, M. Galiegos, J. J. Gillogly, R. B. Greenberg, and R. Villanueva. RITA
Reference Manual. Technical report, The Rand Corporation, 1377. '

5. B. G. Baumgart. Micro-pianner Alternate Reference Manual. Technical report, Stanford
Artificial Intelligance Labaratory, 1972

6. D. G. Bobrow. A Question-answering System for High-school Aigebra Word Problems.
Proceedings of the Fall Joint Computer Conference, Montvaie, NJ, 1964, pp. 591-614.

7. D. G. Bobrow. Natural Language Input for a Computer Problem-solving System. In
M. Minsky. £d., Scimantic Information Processing, MIT Press, Cambridge, MA, 1968, pp.
146-22€.

8. D. G. Bobrow and B. Raphael. New Programming Languages for Artificial Intelligence
Research. ACM Computing Surveys 6, 3 (September 1974), 153-174.

9. D. G. Bobrow and 7. Winograd. An Overview of KRL, A Knowledge Representation
Language. Cognitive Science 1 (January 1577), 3-46.

10. D. G. Bobrow, T. Winograd, and the KRL Research Group. Experience with KRL-0O: One
Cycie of a Knowledge Representation Language. Proceedings of the Fifth Interrational Joint
Conference un Artificial Intelligence, 1977, pp. 213-222. Cambridge, MA.

11. R. Brooks. Production Systems as Control Structures for Programming Languages.
SIGART Newsletter 63 (June 1977), 33-37.

12. R. Davis, B. G. Buchanan, and E. Shortliffe. Production Ruies as a Representation for a
Knowledge-based Consuitation Program. Artificial Intelligence 8 (February 1977}, :5-45

13. R. Davis. Applications of Meta Level Krowledge to the Construction, Maintenance, and
Use of Large Knowledge Bases. Technical report, Stanford University, 1276.

14. R. Davis and J. King. An Overview of Production Systems. In EW. Elcock and
D. Michie, Ed., Mackine Intelligence, Wiley, New York, 1976, pp. 300-332.

15. Digital Equipment Corporation. DEC System10 Assembly Language Handbook.
Maynard, MA, 1972.

16. Digital Equipment Corpo[ation. PDP-11,/40 Processor Handbook. Maynard, MA, 1975.

176

17. L. D. Erman and V. R. Lesser. A Multi-level Organization for Problem Solving Using
Many Diverse Cooperating Sources of Krnowledge. Proceedings of the Fourth International
Joint Conference on Artificial Inteiligence, 1975, pp. 483-490. Tbilisi, USSR.

18. G. Ernst and A Newell. CPS: A Case Study in Generality arnd Problem Solving.
Academic Press, New York, 1969.

19. E. A. Feigenbaum, B. G. Buchanan, and J. Lederberg. On Generaiity and Problem
Solving: A Case Study Using the DENDRAL Program. In B. Meltzer and D. Michie, Ed., Machine
Intelligence, American Elsevier; New York, 1971, pp. 165-190.

20. C, Forgy. A Network Match Routine for Production Systems. 1974,

21. C. Forgy and J. McDermott. OPS, A Domain-independent Production System.
Proceedings of the Fifth International Joint Conference on Artificial Intelligence, 1977, pp.
933-939. Cambridge, MA.

22. C. Forgy and J. McDermott. The OPS2 Reference Manual Technical report,
Department of Computer Science, Carnegie-Mellon University, 1978.

23. S. H. Fuller. Price/perfcrmance Comparison of C.mmp and the PDP-10. IEEE/ACM
Sympcsium on Computer Architecture, IEEE Computer Society, 1976, pp. 195-202.

24. F. Hayes-Roth and D. J. Mostow. An Automatically Compilabie Recognition Network for
Structured Patterns. Proceedings of the Fourth International Joint Conference on Artificiai
Intelligence, 1975, pp. 246-251. Thbilisi, USSR.

25. F. Hayes-Roth, D. A, Waterman, and D. Lenat. Principles of Pattern-directed Inference
Systems. In D. A. Waterman and F. Hayes-Roth, Ed,, Pattern-Directed inference Systems,
Academic Press, New York, 1578, pp. 577-601.

26. C. E. Hewitt. How to Use What You Know. Proceedings of the Fourth International
Joint Conference on Artificial Intelligence, 1975, pp. 189-198. Tbilisi, USSR.

27. C. E. Hewitt. Viewing Control Structures as Patterns of Passing Messages. Artificial
Intelligence 8 (June 1977), 323-364.

28. D. E. Knuth. Sorting and Searching. Addison-Wesiay, Reading, MA, 1973.

29. D. Lenat. Ar Artificial I nteUigenée Approach to Discovery irn Mathemaiics as Heuristic
Search. Ph.D. Th.,, Stanford University, July 1976.

30. V. R. Lesser, R. D. Fennell, L. D. Erman, and D. R. Reddy. Organization ¢f the Hearsay Il
Speech Understanding System. IEEE Transactions on Acoustics, Speech, and Signal
Processing ASSP-23, 1 (February 1975), 11-33.

31. D. McCracken. A Production System Versiorn of the Hearsay-II Sgeech Understanding
System. Ph.D. Th, Carnegie-Mellon University, April 1978.

32. D. McDermott and G. Sussman. Thke Conniver Reference Manual Technical repor?,
MIT Al Lab, 1974,
33. J. McDermott, A. Newell, and J. Moore. The Efficiency of Certzin Producticn System

Implementations. In D.A. ‘Waterman and F. Hayes-Roth, Ed., Pattern-Directed Inference
Systems, Academic Press, New York, 1978, pp. 155-176.

177

34. J. McDermott and C. Forgy. Production System Conflict Resolution Strategies. In
D.A. Watarman and F. Hayes-Roth, Ed., Pattern-Directed Inference Systems, Academic Press,

New York, 1978, pp. 177-1%9.

35. J. McDermott and J. H. Larkin. Re-representing Textbook Physics Problems. Technical
report, Department of Computer Science, Carnegie-Mellon University and Physics Department,
University of California, Berkely, 1978.

36. A. Neweli and H. A. Simon. GPS, A Program that Simulates Human Thought. In
E. A. Feigenbaum and J. Feldman, Ed,, Computers and Thoughs:, McCraw-Hill, Naw York, 1963,

pp. 279-293.

37. A. Newell. Production Systems: Models of Control Structures. In W.G. Chasg, Ed,,
Visual Information Processing, Academic Press, New York, 1973, pp. 463-526.

38. A. Newell and J. McDermott. PSG Manuai. Technical report, Department of Computer
Science, Carnegie-Mellon University, 1975.

39. A. Newell. knowledge Representation Aspects of Production Systems. Proceedings of
the Fifth International Joint Conference on Artificial Intelligence, 1977, pp. 987-938.
Cambridge, MA.

40. Mario Pei. The Story of Language. Mentor, New York, 1966.

41. L. H. Quam. Stanford Lisp 1.6 Manuel Technicz! report, Stanford Artificia
Inteiiigence Laboratory, 1969.

42. R. Reboh and E. A, Sacerdoti. A Preliminary QLISP Manual Technical report,
Artificial Intelligence Center, Stanford Research Institute, 1973.

#3. J. R. Rhyne. Or Finding Conflict Sets in Production Systems. Technical report,
Depariment of Computer Science, University of Houston, 1977.

44. C. Rieger. Spontaneous Computation and its Roles in Al Modeling. In D. A. Waterman
and F. Hayes-Roth, Ed., Pattern-Directed Inference Systems, Academic Press, New York, 1978,

pp. 69-97.

45. J. F. Rulifson, J. A. Derksen, and R. J. Waldinger. QA4: A Procedurai Calculus for
Intuitive Reasoning. Technical report, Stanfcrd Research Institute, 1972,

46. M. Rychener, C. Forgy, P. Langley, J. McDermott, A. Newell, K. Ramakrishna. Probiems in
Building an Instructable Production System. Proceedings of the Fifth International Joint
Conference on Artificial Intelligence, 1977, pp. 337. Cambridge, MA.

47. M. D. Rychener. The STUDNT Production System, A Study of Encoding Knowledg= in
Production Systems. Technicai report, Department of Computer Science, Carnegie-Melion
University, 1975.

48. M. D. Rychener. Production Systems as e Progremming Language for Artificial
Intelligence Applications. Ph.D. Th., Carnegie-Mellon Uriversity, December 1976.

49. M. D. Rychener and A. Newell. An Instructable Production System: Basic Design
Issues. In D. A. Waterman and F. Hayes-Roth, Ed., Pattern-Directed Inference Systems,
Academic Press, New York, 1978, pp. 135-153.

50. E. D. Sacerdoti, R. E. Fikes, R. Reboh, D. Sagalowicz, R. Waldinger, and B. M. Wilber.

178

QLISP -- A Language for Interactive Development of Complex Systems. Prcceedings of ithe
National Computer Conference, Montvale, NJ, 1976, pp. 349-356.

51. O. G. Selfridge. Pandemonium: A Paradigm for Learning. In L. Uhr, Ed,, Pattern
Recognition, Wiley, New York, 1958, pp. 237-250.

52. E. H Shortliffe. Computer-based Medical Consultations: MYCIN. American Eisevier,
New York, 1976.

53. L. Siklossy. Lei’s Talk Lisg. Prertice-Hall, Englewood Cliffs, NJ, 1976.

54. S. Sternberg. Memory Scanning: New Findings and Current Controversies. Quarterly
Journael of Experimental Psychology 27 (January 1975), 1-32.

55. G. J. Sussman and 7. Winagrad. Micro-planner Reference Manual Technical report,
MIT Project MAC, 1970.

56. K. A. VanLehn. SAIL User Manual. Technical report, Stanford Artificial Inieiligcnce
Laboraicry, 1973.

57. S. A. Vere. Relational Production Systems. Artificial Intelligence 8 {February 1977),
47-68.

5&. D. A. Waterman and A. Newell. PAS-II: An Interactive Task-free Version of &
Automatic Protocol Analysis System. IEEE Transactions on Compuiers C-25 {Aprii 1
402-413.

y
$76),

53. D. A. Waterman and F. hayes-Roth. An Overview of Pattern-directea Inference
Systems. In D. A. Waterman and F. Hayes-Roth, Ed., Pattern-Directed Inference Systems,
Academic Press, New York, 1978, po. 3-22.

§0. C. Weissman. Lisp 1.5 Primer. Dickenson, Belmont, CA, 1967.
1, T.Winograd. Understanding Naturel Language. Academic Press, New York, 13872 .

62. V. H. Yngve. Comit Programmers® Reference Manual. MIT Press, Cambridge, MA,
1961.

