
Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Hammurapi
code review platform

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Hammurapi*, king of Babylon (1792-1750 BC)

Hammurapi (1792-1750 BC) was the sixth ruler of a line of Amorite kings, who had
established themselves at the city of Babylon around 1900 BC.

Hammurapi is perhaps most celebrated for his so-called law-code. Although it was not
intended to function like a modern law-code, its statement of traditional or contemporary
practice in all areas of civil and criminal law was an assertion of Hammurapi's role as the
champion of justice. One copy of the text, written in Akkadian cuneiform on a large stela,
was carried off as booty by an Elamite army to the city of Susa in the thirteenth century
BC, and is now in the Musée du Louvre, Paris. There are 282 laws.

English translation of the Hammurapi Code of Laws can be found here:

http://www.bible-history.com/babylonia/BabyloniaCode_of_Hammurapi.htm

Our Hammurapi is a code review tool – it scans Java source files and finds “smelly places”.
We don’t have as many laws (they are called inspectors) as on the Hammurapi stela.
Currently there are over 120 built-in inspectors shipped with Hammurapi. Custom
inspectors are easy to write.

Excurse to history

* Also spelled as Hammurabi.

http://www.bible-history.com/babylonia/BabyloniaCode_of_Hammurapi.htm

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Tools

Hammurapi contains the following tools:
•Hammurapi – performs automated reviews of Java source code. Can be executed from
command line or as Ant task. Loads all source files in database-backed Jsel repository and
generates detailed reports. Intended audience – architects who want to see the whole picture.

•Quickurapi (quick Hammurapi) – Sacrifices insight for the sake of speed. Reviews Java files
one-by-one using in-memory Jsel repository. Generates simplified reports. Can be executed
from command line or as Ant task. Intended audience – developers who care about
compliance of their files.

•Archiver – packages source files and class files/jars in an archive file (.har) to be processed
by Hammurapi or Quickurapi. This tool allows to separate review request and execution in
space and time. Possible usage scenarios: a) Troubleshooting b) Archiver can be executed as
part of build process (it is very fast) and put an archive into a queue directory or ftp it to
another machine to be processed by Hammurapi.

•Query tool – Console application. Allows to query source repositories in a way similar to
querying databases. Uses OGNL for model navigation. There are plans to switch to OCL.
Syntax: select <OGNL expression> from <type> where <OGNL expression>.

•Plugin framework – Classes to embed Hammurapi into Java apps.

•Eclipse plugin – Hammurapi plugin for Eclipse

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

TCO reduction:
– Developers learn while they work

– Outsourcing and on-boarding is easier because corporate standard are
enforced automatically
Information week: “Many companies are not satisfied with outsourcing”.
One of reasons – low code quality.

– Maintenance is easier because all code follows standards

– Safety net provided by Hammurapi allows to use advanced coding
techniques, e.g. complex patterns.

Risk mitigation
• Automated detection of potential problems mitigates risk of runtime failures

• Technology stack inspector mitigates risk of rework caused by usage of
improper library or version of library

Benefits

Gartner says only 32% of the 2.5 million
Java developers in the world have genuine
knowledge, which means there is a serious
lack of high-level development skills.

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Jump start

Review sample files:
• Download Hammurapi from http://www.hammurapi.org
• Unzip
• Run ant in projects/template directory
• Open project/template/review/report.html in a Web browser

Review your files:
• Create a copy of projects/template directory
• Put your source files to src directory
• Put jar files to lib directory
• Run ant clean
• Run ant
• Browse report created in review directory

http://www.hammurapi.org/

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Quality engine

Accountability

Reproducibility

Continuous
Quality
Control

Automated code inspection is
just one of cogwheels in the
quality engine.
You need to make sure that all
wheels are greased and mesh
properly

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Enterprise-oriented
• Inspectors and waivers can be loaded
from files and URLs, e.g. from a central
web server.

• Hierarchical inspector sets and
inspector configuration from multiple
sources – you can define common rules
and then fine tune them for technology,
component or review type.

• Waivers – handle special cases.

• Listeners – integration.

• HTML Reports – publish in Intranet.

• Builds can be failed on low code quality.

• Omnipresence:
� Developer desktop - Eclipse plugin or
Quick task

� Version control - CVS check-in handler
(Quick task)

� Build process – Ant task.

Architect

C
oding

Automated
review

M
an

ua
l

re
vie

w

Report

Set
Inspector

Developers

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Knowledge management

Results of

• code reviews

• production troubleshooting

• end-of-project “lessons learned” sessions

can be captured as inspectors and disseminated to the whole
organization.

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Control

Hammurapi allows you to actively defend yourself from bad code by failing
builds on:

• Sigma threshold – if Sigma is too low

• DPMO threshold – if DPMO is too high

• Severity threshold – if code contains violations more severe than you
can tolerate.

• Warnings – if not all inspectors could perform their job (misconfiguration)

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Time dimension

Review results are persisted and reviews have
“time dimension”:
• Files changed since last review are marked with “New” icon

• Baselined reviews show deltas between current review and
base review

• History annotation shows codebase evolution in a table and
charts.

• Comply-on-touch policy

• Only modified files are reviewed – faster incremental
reviews while producing complete report.

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Changes highlighting

Package is
highlighted if it

contains
changed filesFiles changed

since last
review

Files changed
since last

review

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Baselined reviews

Baseline
date

DeltasDeltasDeltas

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

History annotation

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Comply-on-touch

In incremental reviews setup
Inspectors do not have retroactive force
unless “force” attribute is set to “true”

Hammurapi reviews only files modified since last review.

If new inspectors are added to inspector set between reviews
then they will report violations only in “touched” files –
modified or newly added.

This allows to implement gradual code quality improvement on
large code bases – inspectors are added in small groups and
developers shall bring to compliance only files they currently
work on.

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Jsel metamodel

StaticInitializer InstanceInitializer

Constructor

ArrayInitializer

Parameter
+ isFinal : boolean
+ name: String

InitializerVariableDefinition
+ name: String

Code

Operation
+ throws: List<String>

Method
+ nam e: String

Field

Identifier
+ value: String

Double Long Float Int Short Char Byte Boolean Void

BuiltInType

Type

ClassTypeSpecification

BuiltInTypeSpecification

TypeSpecification
+ isArray: Boolean

Repository

+ load(File)
+ load(File, String[])

Attributable

+ setAttribute(String, Object) : void
+ getAttribute(String) : Object
+ removeAttribute(String) : Object

Package
+ name: String

ForIni tial izer
Declaration

Modifiable
- modi fiers: List<String>

Interface

TypeDefinition
+ name: String

SourceMarker
LanguageElement

+ ast: AST
+ signature: Signature

+ accept(Visi tor) : void
+ navigate(String) : Object
+ i terate(String) : Iterator

Class

CompilationUnit

JavaDoc
+ text: String
+ tags: List

Statement
statements::CompoundStatement
- statements: List<Statement>

expressions

statements

LanguageElement
expressions::Expression

TypeIdentifier

Referenceable

+returnT ype

*

+types

*

+usage

+parent

+type

+type

*

+implem entedInterfaces

*

*

+imports

0..1

+superclass

*+superinterfaces

Hammurapi inspectors work on Java metamodel in
contrast with most code review tools which work on
AST (parse tree) or bytecode. It makes inspectors
easy to write.

Jsel comparing to AST is like Java comparing to
assembly language.

Fragment of Jsel
metamodel

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Visitor pattern

• Hammurapi uses modified Visitor
pattern to navigate inspectors through
source code.

• Navigation is performed through Jsel
model, not through AST.

• Inspectors don’t need to implement
Visitor interface – Dispatching visitor
invokes visit() and leave() methods
based on type compatibility

• Javadoc comments are parsed and
visited by inspectors

• Individual tokens are visited as well

Dispatching
visitor is a bus
and inspectors

are passengers.

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Report structure
Everything is within 2 mouse clicks

Inspectors
catalog

Inspector
descriptor

Inspector
summary

Metric
details

Annotation

Compilation unit
report

Report

Main frameLeft navigation

Inspectors

Toc

Totals

Files

Severity summary

Metrics

Annotations

JavaDoc link

JavaDoc link

Files
JavaDoc

Waived
violations

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Report

Navigation
frame

Main frame

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Navigation frame

Bold font
indicates that
file contains
violations

Link to
JavaDoc

Modified since
last review

Indicates that
package
contains

modified files

Number of
Violations in

file

Total number
violations in

package

Link to
inspectors

catalog

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Inspectors catalog

Link to
descriptor

Severity

Inspector
category

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Inspector descriptor

Inspector descriptor is
an educational resource
on developer’s fingertips

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Summary

Totals with
deltas

Link to
descriptor

Link to list
of sources

Color coding of
maximum severity

in the file:
1 – Pink,

2 – Yellow,
3 – Green,

Other - White

Link to list
of metric
sources

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Inspector summary

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Compilation Unit

Totals

Metrics

Violations

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Metric details

Ordered
by value

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Hammurapi

Architecture

Antlr

SQLC Generated classes

Jsel

Core

Inspectors Stylesheets

Common library
Rendering
framework

SqlProcessor Dispatching visitor

SQLC

Hypersonic

Query
tool

Eclipse pluginQuick taskAnt task

Ant

Archiver

Plugin framework

Click on a box to navigate to product home page

http://ant.apache.org/
http://sourceforge.net/projects/hsqldb/
http://www.pavelvlasov.com/pv/content/Articles/sqlc/sqlc.html
http://www.pavelvlasov.com/pv/content/Articles/articles.sql.html
http://www.pavelvlasov.com/pv/content/Products/Common/products.common.html
http://www.pavelvlasov.com/pv/content/Products/Jsel/products.jsel.html
http://www.hammurapi.org/content/Hammurapi.1.8.html
http://www.antlr.org/
http://www.hammurapi.org/

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Architecture (continued)

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Sample inspector

Descriptor

Source

Requires to use a.equals(b) instead of a.compareTo(b)==0

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Inspector services

Inspectors are provided the following services:
• Configuration injection through setters.

• Inspector Context allows inspectors to
• Add metrics
• Add annotations
• Report violations
• Issue a waiver for another inspecor
• Output warning
• Perform logging at debug, verbose and info levels.

• Session provides:
• Inspectors interaction
• Persistency

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Annotation is a means to customize Hammurapi report by
adding arbitrary information.

Two types of annotations :

• Linked annotations

• Inline annotations

As names suggest the first is rendered as a link and the second
is inlined into summary page.

Annotations

Next slide

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Tech stack inspector

Example of linked
annotatoin

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Eclipse plugin

Under development

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Waivers

Waiver is the way to tell Hammurapi that some finding is not actually a violation. For example
sometimes you need to have empty catch block as in the example below:

Waived violations will appear in the report as shown below:

•Waivers can be given per location (as described above) or per class/interface, compilation unit or package.

<waiver>
<inspector-name>ER-002</inspector-name>

<signature>org/hammurapi/inspectors/testcases/violations/EmptyCatchBloc
kRuleViolationTestCase.java:at[EmptyCatchBlockRuleViolationTestCase]:ao
[getFirstByte(java.lang.String)]:eo[1]:es[java.io.IOException]</signatu
re>

<reason>This exception is ignored for testing purposes.</reason>
<expiration-date>2004/05/15</expiration-date>

</waiver>

int integer=defaultValue;
if (string!=null) {
try {

integer=Integer.parseInt(string);
} catch (NumberFormatException e) {

// do nothing – use default value
}

Waivers may
have

expiration date

Waivers may
have

expiration date

Waivers are defined in XML file. Typical
scenario is that the Architect or Senior
developer manually reviews Hammurapi
findings and decides what to do – fix or
give a waiver.

Waivers are bound not to
line and column but to parse

path. They survive most
source modifications

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Inspectors interaction

• Auto-waivers – inspector can waive findings of another.

• Filters – inspector act as an approver on visit() methods for another
inspector or multiple inspectors.

• Accessing other inspector context – inspector can report violations on
behalf of another.

• Ordering – It is possible to ensure that visit() method of one inspector is
always executed before visit() method of another.

• Attributes of context and session – Inspector context and Session are
attributable. It allows inspectors share information.

• Attributes of Jsel elements – same as above.

• Database – Inspectors have access to a database to store information
and access information stored by other inspectors or at previous reviews.

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Auto waivers

Autowaivers allow one inspector waive finding of another.
Example: if code complies with “ER-049 Unify logging strategy - define individual
logger for class” then it violates “ER-075 Avoid hiding inherited instance fields”.*

To avoid this situation ER-049 automatically waives ER-075 by calling
context.waive(element, “AvoidHidingInheritedInstanceFields”).
The first parameter is the element for which waiver is given. The second parameter
is a logical name of the inspector which finding is being waived.

* ER-049 was enhanced and this situation is not the case anymore. It is shown here as a good example of autowaiving

ER-049 Descriptor
contains <waives>

element

ER-075 is defined
as waivable

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Filters

Filtering allows one inspector filter another, which means stop visit() method of
inspector being filtered from being invoked.

This concept is similar to autowaiving, but autowaiving is more precise and
elaborate mechanism.

Autowaived violations appear in the report in “Waived violations” section.

Filtering prevents inspector from visiting the node being filtered and thus no
violation is ever reported.

Filter – Inspector is a many-to-many relationship. One filter can filter multiple
inspectors and one inspector can be filtered by multiple filters.

Filter may be associated with inspector by name or by category.

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Next steps

• “Control center” web application to host and manage inspector sets,
projects, waivers, …

• Java 1.5 support

• Review of other content types – Jsel in architecture slide can be easily
replaced with another Visitable. Generic support to review any Antlr-
generated AST is already in place.

• Multi-module reviews – combine reviews of different content types in one
report. E.g. Java, SQL, HTML. Or several Java reviews with different
settings. E.g. Java and JSP.

• More inspectors

• Compiled stylesheets to speed-up report generation.

• …

Pavel Vlasov, January 2005

Code review platform

http://www.hammurapi.org

Code structure visualization
Help request

Jsel & Hammurapi provide means
to collect all necessary info to build
such a picture.

A volunteer is welcome to
implement visualization part.

	Hammurapi�code review platform
	Excurse to history
	Tools
	Hammurapi contains the following...
	Hammurapi – performs automated r...
	Quickurapi (quick Hammurapi) – S...
	Archiver – packages source files...
	Query tool – Console application...
	Plugin framework – Classes to em...
	Eclipse plugin – Hammurapi plugi...

	Benefits
	TCO reduction:
	 Developers learn while they wor...
	 Outsourcing and on-boarding is...
	Information week: “Many companie...
	One of reasons – low code qualit...
	 Maintenance is easier because a...
	 Safety net provided by Hammurap...
	Risk mitigation
	 Automated detection of potentia...
	 Technology stack inspector miti...

	Jump start
	Review sample files:
	Download Hammurapi from http://w...
	Unzip
	Run ant in projects/template dir...
	Open project/template/review/rep...
	Review your files:
	Create a copy of projects/templa...
	Put your source files to src dir...
	Put jar files to lib directory
	Run ant clean
	Run ant
	Browse report created in review ...

	Quality engine
	Enterprise-oriented
	 Inspectors and waivers can be l...
	 Hierarchical inspector sets and...
	 Waivers – handle special cases.
	 Listeners – integration.
	 HTML Reports – publish in Intra...
	 Builds can be failed on low cod...
	 Omnipresence:
	 Developer desktop - Eclipse plu...
	 Version control - CVS check-in ...
	 Build process – Ant task.

	Knowledge management
	Results of
	 code reviews
	 production troubleshooting
	 end-of-project “lessons learned...
	can be captured as inspectors an...

	Control
	Hammurapi allows you to actively...
	 Sigma threshold – if Sigma is t...
	 DPMO threshold – if DPMO is too...
	 Severity threshold – if code co...
	 Warnings – if not all inspector...

	Time dimension
	Review results are persisted and...
	 Files changed since last review...
	 Baselined reviews show deltas b...
	 History annotation shows codeba...
	 Comply-on-touch policy
	 Only modified files are reviewe...

	Changes highlighting
	Baselined reviews
	History annotation
	Comply-on-touch
	Jsel metamodel
	Visitor pattern
	 Hammurapi uses modified Visitor...
	 Navigation is performed through...
	 Inspectors don’t need to implem...
	 Javadoc comments are parsed and...
	 Individual tokens are visited a...

	Report structure
	Report
	Navigation frame
	Inspectors catalog
	Inspector descriptor
	Summary
	Inspector summary
	Compilation Unit
	Metric details
	Architecture
	Architecture (continued)
	Sample inspector
	Inspector services
	Inspectors are provided the foll...
	 Configuration injection through...
	 Inspector Context allows inspec...
	 Add metrics
	 Add annotations
	 Report violations
	 Issue a waiver for another insp...
	 Output warning
	 Perform logging at debug, verbo...
	 Session provides:
	 Inspectors interaction
	 Persistency

	Annotations
	Annotation is a means to customi...
	Two types of annotations :
	 Linked annotations
	 Inline annotations
	As names suggest the first is re...

	Tech stack inspector
	Eclipse plugin
	Waivers
	Waivers can be given per locatio...

	Inspectors interaction
	 Auto-waivers – inspector can wa...
	 Filters – inspector act as an a...
	 Accessing other inspector conte...
	 Ordering – It is possible to en...
	 Attributes of context and sessi...
	 Attributes of Jsel elements – s...
	 Database – Inspectors have acce...

	Auto waivers
	Filters
	Next steps
	 “Control center” web applicatio...
	 Java 1.5 support
	 Review of other content types –...
	 Multi-module reviews – combine ...
	 More inspectors
	 Compiled stylesheets to speed-u...
	 …

	Code structure visualization

