Bytecode generation
tips and tricks

Abstract
This article introduces readers to bytecode generation and also shows how to inject generated
bytecode into JVM runtime. After reading this article generating a Java class shall be no more
difficult for you than creating an XML document with DOM API.

Introduction

Over last couple of years bytecode generation gained
significant momentum. Many tools generate bytecode
instead of source code to obviate compilation step and
simplify injection of generated code at runtime.

There is a number of bytecode generation libraries with
BCEL™ being the most renown and, probably, most
elaborated. It is used by such tools as Xalan stylesheet
compiler® and Mercury Interactive's Topaz J2EE Probe.
Sooth to say, BCEL API is a bit cumbersome. While
working on SQLC®2, I've created several helper classes®!
to make bytecode generation easier. Examples in this article
use both BCEL and my classes.

Bytecode vs. source generation

You may ask: “Why to bother with bytecode generation if |
can produce Java sources?” Ultimately, it's your call what
technique to use. For example some people create XML
documents with printin(), other use DOM API. Keep the
following considerations in mind:

+ With Jad® and Jadclipse!” .class file is as an open book
as .java file. But read-only. So there is no need in (and
actually no place for) formidable headers “Generated by
XXX - Do not edit!”

« There is an additional compilation step if you produce
sources instead of bytecode. Compilation at runtime and
then injection of compiled files to JVM is a real big
headache, especially if you do not control target JVM.

« Amount of Java code you need to write to produce Java
sources will not be significantly less than amount of Java
code for bytecode generator. Actually, it may be more.

« Use of different template engines has its own vices. First
of all generation logic gets distributed between Java code
and template code, which makes the whole solution less
manageable and more fragile, because templates aren't
easy to debug. Secondly, as you start adding more and
more to your templates they will pretty soon become
unreadable. Take a look at Xdoclet templates — they
remind me cuneiform on the Hammurabi stella.

Usage scenarios

BCEL can be used for code generation (this is what XSLTC
and SQLC do) and for code modification (this is what
Mercury Topaz J2EE Probe does). This article covers the
first scenario — code generation. In MDA parlance it
describes how to build T in PIM+T -> PSM equation where
PSM is Java bytecode and PIM is XSL stylesheet in case of

XSLTC and SQL statements in case of SQLC

Generating interfaces

Generating interfaces is the simplest task because interfaces'

methods are all abstract. First of all we need to instantiate

com.pavelvlasov.codegen. Interface:

1. Interface myInterface=new Interface ("public
interface com.myorg.myapp.MyGeneratedInterface

extends java.io.Serializable", "My Generated
interface", null) ;

Then add a method. This is as straightforward as creating an
interface itself:
1. myInterface.addMethod ("void setMyValue

(java.lang.String str)", null, "My generated
method") ;

If the method parameters are not known at coding time then
they can be supplied in the second parameter of addMethod
Q. which shall be either null or a collection of
com.pavelvlasov.util.Parameter implementations.

Adding a field is also an one-liner:

1. myInterface.addField ("MY CONSTANT",
"java.lang.String") ;

But fields in interfaces are static final and thus shall be
initialized in the static initializer:

1. InstructionList il=new InstructionList () ;

2. i1l.append (new LDC (myInterface.getClassGen() .
getConstantPool () .addString ("My constant
value"))) ;

. 1l1.append (myInterface.createPutField
("MY CONSTANT")) ;

. il .append(new RETURN()) ;

. myInterface.addStaticInitializer(il,
"Initializes myInterface");

Once an interface is created and methods added it should be
either saved to file for future use or injected into JVM
runtime. Interface can be saved to file by invoking its save
(File) method. Another way is to obtain BCEL JavaClass
object using getJavaClass() method and do whatever
needed with that object.

In case the generated interface needs to be injected into Java
runtime

com.pavelvlasov.codegen. InjectingClassLoader COMeS
into play.

1. ClassLoader parentClassLoader = ...;

2. InjectingClassLoader icl=new
InjectingClassLoader (parentClassLoader) ;
icl.consume (myInterface) ;

. Class myInterfaceClass=icl.loadClass
("com.myorg.myapp .MyGeneratedInterface") ;
Bo coo

w

(S

[N

Generating classes

Generating classes is a bit more complicated task comparing
to interfaces generation because of the need to generate
method implementations.

Advices on code generation:

« Minimize amount of code to be generated by moving
functionality to superclass and helper classes

+ Create a template method in Java, compile it.

* Runorg.apache._bcel .util.Class2HTML to generate
class HTML documentation.

e Runorg.apache.bcel .util _.BCELifier. It will create
code, which would generate template class. There is a
bug in BCELIifier shipped in BCEL 5.1 and it doesn't
work on all classes. See “Resources” for a download link
of fixed version.

« Use instructions produced by BCEL ifier as a starting
point. You can also copy bytecode instructions from
generated HTML documentation to your generator
method; comment them out and then write code using
commented instructions as guidelines. The most
convenient method, at least for me, is to use -a option in
Jad - it produces already commented JVM instructions.
There is an option “Generate JVM instructions as
comments” in Jadclipse as well.

* Runorg.apache.bcel.verifier.Verifier Or
com._pavelvlasov.codegen.ClassGeneratorBase.veri
fy() on the generated classes.

« Use Jad and/or Jadclipse to decompile generated files
and verify method logic.

Writing linear bytecode is very simple, as we've seen from
the previous section. Branches (if, while, ...) and exception
handlers are the things which require attention. Let's see how
to generate code, which has both branches and exception
handlers using the advices above. This is the code we are
going to generate;

1. public int getMyInt (String str)

2. if (str==null) {

3. return O0;

4. } else {

5 try {

6. return Integer.parselnt
(str);

7. } catch (NumberFormatException e) {

8. return -1;

9. }

10. }

11.}

this is the output of BCEL ifier:

1. InstructionList il =
2. MethodGen method =

new InstructionList () ;
new MethodGen (ACC_PUBLIC,

Type.INT, new Typel[l { Type.STRING }, new
String[] { "arg0" }, "getMyInt",
"com.pavelvlasov.codegen.samples.TemplateClass"
, Al, @p) ¢

4. InstructionHandle ih 0 = il.append

(_factory.createLoad (Type.OBJECT,
5. BranchInstruction ifnonnull 1 =
_factory.createBranchInstruction
(Constants.IFNONNULL, null) ;
6. il.append(ifnonnull 1) ;

1)) ;

7. InstructionHandle ih 4 =
(_ep, 0));
8. il.append(factory.createReturn (Type.INT)) ;
9. InstructionHandle ih 6 = il.append
(_factory.createLoad (Type.OBJECT,
il.append(factory.createlInvoke
("java.lang.Integer", "parseInt",
Type [l { Type.STRING },
Constants.INVOKESTATIC)) ;
InstructionHandle ih 10 = il.append
(_factory.createReturn (Type.INT)) ;
InstructionHandle ih 11 = il.append
(_factory.createStore (Type.OBJECT, 2)) ;
InstructionHandle ih 12 = il.append(new PUSH
(_cp, -1));
.InstructionHandle ih 13 = il.append
(_factory.createRetufh(Type.INT));
.ifnonnull 1.setTarget (ih 6) ;
.method.addExceptionHandler (ih 6,
new ObjectType
("java.lang.NumberFormatException")) ;
.method.setMaxStack () ;
.method.setMaxLocals () ;
19. cg.addMethod (method.getMethod ()) ;
20.1il.dispose() ;

il.append (new PUSH

1))
10.
Type.INT, new

11.
12,

13,

ih 10, ih 11,

Now, we change it to be less cryptic:

1. MethodPrototype mp=new MethodPrototype (myClass,
"public int getMyInt (java.lang.String str)",
null) ;

. InstructionList il = new InstructionList () ;

3. ExceptionHandler eh=new ExceptionHandler

("java.lang.NumberFormatException") ;

4. il.append (mp.createVariableLoad ("str")) ;

5. BranchInstruction ifnonnull =
InstructionFactory.createBranchInstruction
(Constants.IFNONNULL, null) ;

6. il.append (ifnonnull) ;

7. 1l.append (new ICONST (0)) ;

8

9

N

. 11.append (mp.createReturn()) ;

. InstructionHandle ih = il.append
(mp.createVariableLoad ("stxr")) ;
.1fnonnull.setTarget (ih) ;
11.eh.setFrom(ih) ;

.11.append (myClass.createInvoke
("java.lang.Integer", "int parselnt
(java.lang.String)", null,
Constants.INVOKESTATIC)) ;

.eh.setTo (il.append (mp.createReturn())) ;
.eh.setHandler (il.append
(InstructionFactory.createStore (Type.OBJECT,
2)));

15.il.append (new ICONST(-1)) ;

16.11.append (mp.createReturn()) ;

17.Collection ehc=new ArrayList () ;
18.ehc.add (eh) ;
19.mp.addMethod (i1,

13
14

ehc, "My generated method") ;

After that we run org.apache.bcel .verifier.Verifier {0
verify the generated class. Then we run Jad and compare
decompiled code with the original.

Generating documentation

If you generate classes, which implement some interface
then you probably don't need to document them. E.g. Xalan
XSLTC produces a bunch of classes but you don't need
documentation for these classes, all you need to know is
translet class name. On the other hand SQLC (see
Resources) generates classes and interfaces from SQL
statements and in this case documentation is necessary. The
good thing about classes from com.pavelvlasov.codegen

package is that if you use them to generate bytecode then
effort needed to generate documentation is close to zero.
What you need to do is to use class
com.pavelvlasov.codegen.HtmlIDocConsumer
1. HemIDocConsumer consumer=
new HtmlIDocConsumer (

new File(‘'generated"),

new File('generated_doc™));

. com.pavelvlasov.codegen.Class myClass=

new com.pavelvlasov.codegen.Class(
“public class

com.myorg.myapp-MyGeneratedClass",

9. "My Generated class",

10. consumer .getListener());

11....

12.// Saving to file.

13.consumer .consume(myClass.getJavaClass());

14.consumer.close();

W J o Ul B W N

Runtime generation

Classes can be generated at build time and runtime. The first

case is a trivial one — generated classes can be use as any
other Java classes.

Runtime code generation is more interesting theme. It has
already been shown how to inject generated classes into
JVM runtime. How to use them? If generated classes
implement interfaces or extend classes known at compile
time then the answer is obvious — instantiate and cast.

What if generated classes do not fall in the category

mentioned above? How to use classes not known at compile
time? Well, the answer is that information about generated

classes can be obtained through reflection. Scripting
environments such as JSP, JSTL, Velocity and script

interpreters will use generated classes as happily any other

class loaded from classpath.

An important note about runtime generation: BCEL is not

threadsafe. If you are going to generate classes in

multithrreaded environment then each generating thread
shall be provided its own classloader with BCEL classes
loaded into this particular classloader. This will result in

increased memory footprint because BCEL classes will be

presented in memory one time per generating thread.

Conclusion

| hope, dear reader, that after reading this article bytecode
generation will become part of your skillset.

There are many cases when there is a model/data structure in

non-Java software system., which shall be used in Java. It
can be XML schema, mainframe map, database metadata, ...
There is probably no reason to write a generator for XML
schema because it has already been done many times, just

select XML-Java mapping solution which fits your need. But

for not so common cases bytecode engineering is a good
choice to generate bridges between software components.

Resources

1. Source code - see donwnload page on
http://www.hammurapi.biz. You need to download
BCEL, Antlr and PvCommons libraries (see below) to
run the samples.

2. BCEL (http://jakarta.apache.org/bcel/) - Byte Code
Engineering Library.

3. BCEL with fixed bug http://www.pavelvlasov.com/bcel-
5.1-fixed.zip

4. JVM instructions reference
http://cat.nyu.edu/~meyer/jvmref/

5. Antlr (http://www.antlr.org) — Parser generator.
6. Jad (http://kpdus.tripod.com/jad.html) — fast decompiler

7. Jadclipse (http://sourceforge.net/projects/jadclipse/) -
Eclipse plugin for Jad

8. Common library (http://www.hammurapi.biz)

8.1.com.pavelvlasov.codegen package — Code
generation classes.

8.2.com_pavelvlasov.sqlc package — SQL compiler.
Uses codegeneration classes to compile SQL
statements to Java classes.

8.3.com_pavelvlasov.cache.sql — Example of classes
compiled by SQLC
9. Xalan (http://xml.apache.org/xalan-j/) - Java XSL

transformer. Ships with XSLT Compiler, which uses
BCEL to compile xsl stylesheets into “translets”.

