
Hammurapi rules User Guide

Hammurapi Group

Hammurapi rules
user guide

 1

Hammurapi rules User Guide

Legal Notices

Copyright (c) 2006 Hammurapi Group.
 Permission is granted to copy, distribute and/or modify this
document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
 Texts. A copy of the license is included in the section entitled
"GNU
 Free Documentation License".

Warranty Disclaimer

THERE IS NO WARRANTY FOR THE WORK, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING HAMMURAPI GROUP PROVIDES THE WORK "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL HAMMURAPI GROUP BE
LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE WORK, EVEN IF HAMMURAPI GROUP HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES.

 3

Hammurapi rules User Guide

Table Of Contents
INTRODUCTION ... 9

FEATURE HIGHLIGHTS... 9

INSTALLATION .. 10

QUICK START GUIDE.. 10

TERMINOLOGY .. 10

USING RULE ENGINE IN A JAVA PROGRAM .. 11

WRITING RULES .. 12

Negation .. 13

Updating and removing facts ... 13

Parameterization ... 14

CREATING A RULE SET ... 14

REGISTERING A RULE SET .. 15

With the command line utility ... 15

Programmatically ... 15

TROUBLESHOOTING... 15

PERSISTING KNOWLEDGE BASE .. 16

DISTRIBUTED INFERENCE ... 16

ARCHITECTURE .. 17

ADMINISTRATIVE INTERFACE .. 17

REGISTRATIONS FILE XML FORMAT .. 17

RULE SET XML FORMAT .. 18

RUNTIME COMPONENTS ... 19

OBJECT BUS INTERNALS .. 20

Invocation handlers.. 20

Dispatching.. 21

Multi-parameter infer() methods and collection manager... 22

NEW INVOCATION SEMANTICS... 23

AUTODETECTION OF UPDATES .. 24

Notes ... 24

 5

Hammurapi rules User Guide

LIFECYCLE OF RULE ENGINE COMPONENTS .. 24

TUTORIAL .. 25

INSTALLATION ... 25

LOOKING INSIDE .. 25

RUNNING TUTORIAL ... 32

Direct loading of the rule set .. 32

Registering the rule set.. 32

List registered rule sets.. 32

TO-DO.. 32

VALIDATOR... 33

Validator vs. negators .. 33

ADMINISTRATIVE COMMAND LINE UTILITY .. 35

REGISTER ... 35

DEREGISTER ... 36

LIST ... 36

DUMP ... 36

JSR-94 IMPLEMENTATION NOTES.. 37

TECHNOLOGY COMPATIBILITY KIT.. 37

RULE SERVICE PROVIDER.. 37

RULERUNTIME .. 38

createRuleSession(String uri, Map properties, int type)... 38

RULESESSION .. 39

Methods... 40

ADMIN.. 40

RuleAdministrator .. 40

LocalRuleExecutionSetProvider .. 41

RuleExecutionSet .. 41

RuleExecutionSetProvider... 41

METHODOLOGY .. 43

ROLES ... 43

STEPS.. 43

 6

Hammurapi rules User Guide

SUPPORT OF SPECIALIZED RULE LANGUAGES .. 44

CUSTOM RULE EXAMPLE .. 44

SPECIALIZED RULES LANGUAGE FOR THE TUTORIAL .. 45

Language constructs ... 45

Example... 46

Implementation notes .. 46

RETE ALGORITHM .. 46

NEGATIONS AND RETRACTIONS .. 54

SUMMARY... 54

BACKWARD CHAINING .. 56

EXAMPLE.. 56

IMPLEMENTATION .. 57

INTERACTIVE RULES PARAMETERIZATION.. 58

APPLICABILITY .. 58

DATA FLOW PACKAGE .. 60

APPENDIX 1 ENGAGEMENT MODEL... 61

OBTAINING LATEST RELEASES ...
INTERACTION WITH THE COMMUNITY ..

Discussion board ..
Wiki...

NEWSLETTERS...
REPORTING BUGS AND GETTING HOT FIXES
CONTRIBUTION ..
COLLABORATION..
E-MAIL ..
OBTAINING COMMERCIAL SERVICES ...

APPENDIX 2 GNU FREE DOCUMENTATION LICENSE... 63

REFERENCES .. 71

 7

Hammurapi rules User Guide

Introduction
Hammurapi rules is a JSR-94 compatible forward chaining Rule engine.

Feature highlights
• Java is the primary language for rules authoring. Hammurapi rules leverages Java

type system and several naming conventions to build its Rete network.

o Java developers quickly get familiar with rules authoring.

o No need for a Java developer to learn a specialized rules language and
development tools and switch between languages. Developers keep "thinking in
Java", which strengthens their Java skills instead of diluting them shall they have
to switch between languages (see Occam's Razor overarching principle).

o Debug rules in your Java IDE.

o Compile time checks vs. runtime exceptions. There is no interpretation steps
once rule set is instantiated from XML definition (rule sets are defined in XML)
but only fast, robust, type-safe compiled Java.

o Rules can natively access underlying Java application.

• Flexibility

o Rule sets are defined in XML.

o Rules can be parameterized at assembly time and registration time.

o Specialized rules languages can be added if needed.

• Scalability

o Hammurapi rules supports multithreaded inference.

o Working memory can be stored to disk or to database and as such survive JVM
shutdown.

o Inference can be distributed across multiple machines.

• Rules are assembled into rule sets and parameterized at runtime by the means of XML.
Hammurapi rules can load rule sets from different sources including file, url and
classloader resources.

• Negations support.

• Logical loops detection.

• Autodetection of updates.

 9

http://wiki.hammurapi.biz/index.php?title=Overarching_principles#Stick_with_Java_.28Occam.27s_Razor.29

Hammurapi rules User Guide

• Rule engine builds derivation trees to help in debugging rules logic. Derivation trees can
be dumped to XML or visualized in Swing GUI.

Installation
• Download Hammurapi rules from the Hammurapi rules download page.

• Unzip it to location of your choice, e.g. C:\Tools\HammurapiRules.

• Set HAMMURAPI_RULES_HOME environment variable to the location where you
unzipped the product, e.g. C:\Tools\HammurapiRules.

• Add the product directory to the system path.

• If you use Java 1.4, download JAXP-1.3 from https://jaxp.dev.java.net/1.3/index.html.
Install it and add jar files from the JAXP installation directory to the Hammurapi Rules
lib directory.

Quick start guide
This sections provides a quick overview of rule engines, JSR-94 and Hammurapi rules.

Terminology
• Fact is a piece of knowledge. E.g. "John is a 45 years old male" or "Jim is a child of

John". Facts are inputs to rules.

• Conclusion is a fact derived/inferred from other facts. E.g. from the two facts above
and the fact that "Mary is a child of Jim" we can conclude that "John is a grandfather of
Mary".

• Knowledge base in an internal collection of facts including conclusions which rule
engine operates with. In some engines knowledge base is called working memory.
Hammurapi rules' knowledge base can be held in memory or in persistent storage.

• Rule is a piece of logic which can make conclusions based on provided facts and
context (e.g. configuration parameters). Rules can also execute actions. E.g. "If the
credit limit of the customer is greater than the amount of the invoice and the status of
the invoice is unpaid, then decrement the credit limit with the amount of the invoice and
set the status of the invoice to paid.

• Rule set is a collection of rules.

• Rule engine (a forward chaining one) is a piece of software which hosts rule sets,
passes input facts to rules, collects conclusions, and passes the conclusions to rules.
By doing so it chains conclusions and allows to infer non-trivial ones from simple facts
and with simple rules. Please note that in Hammurapi rules chaining conditions and

 10

http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-group/products/hammurapi-rules/xmenu428.html@parent=36&uplink=no.html
https://jaxp.dev.java.net/1.3/index.html
http://en.wikipedia.org/wiki/Forward_chaining

Hammurapi rules User Guide

chaining conclusions is the same thing, because condition evaluated to true is a form of
conclusion. See Rete algorithm section for more details.

• JSR-94 is a Java specification for interfacing with rule engines. For rule engine
implementations it serves the same purpose as JDBC for databases or JSR-168 for
portlets.

Using rule engine in a Java program
Using a JSR-94 compatible rule engine in a Java application includes the following steps:

• Obtain rule service provider.

• Obtain rule runtime.

• Create rule session.

• Give input facts to the session.

• Collect conclusions.

• Release the session.

There are two types rule sessions in JSR-94: stateful and stateless. A stateless session gets
all inputs and returns conclusions in one method call. A stateful session allows to add facts
and draw conclusions in a series of calls over the course of program execution.

The example below shows how to use a stateful rule session.
String ruleServiceProviderClassName = "biz.hammurapi.rules.jsr94.FileRuleServiceProvider";
Class.forName(ruleServiceProviderClassName);
RuleServiceProvider serviceProvider =
RuleServiceProviderManager.getRuleServiceProvider(ruleServiceProviderClassName);
RuleRuntime runtime = serviceProvider.getRuleRuntime();
StatefulRuleSession session = (StatefulRuleSession) runtime.createRuleSession(ruleSetUri, null,
RuleRuntime.STATEFUL_SESSION_TYPE);

Person kate = new Person("Kate", 58, false);
Person victor = new Person("Victor", 63, true);
session.addObject(new Spouse(kate, victor));

Person peter = new Person("Peter", 37, true);
session.addObject(new Child(peter, kate));
session.addObject(new Child(peter, victor));

... Add more facts ...

session.executeRules();

Iterator it=session.getObjects().iterator();
while (it.hasNext()) {
 System.out.println(it.next());
}

session.release();

 11

http://www.jcp.org/en/jsr/detail?id=94
http://en.wikipedia.org/wiki/JDBC
http://www.jcp.org/en/jsr/detail?id=168

Hammurapi rules User Guide

Writing rules
In Hammurapi rules rules are typicaly written in Java. There is no need for a Java
programmer to learn a new language and new IDE to write and troubleshoot rules. Also there
are compile-time checks, which reduce probability of runtime errors.

NOTE: Specialized rules language can be added to the engine if it is justified by the problem
domain and rule authors' skill set.

NOTE: Most code snippets in this document are based either on Hammurapi rules tutorial or
Hammurapi rules Technology Compatibility Kit (TCK), which can be downloaded from the
Hammurapi rules download page.

Java rules should extend biz.hammurapi.rules.Rule and implement one or more infer()
methods. Infer methods shall take one or more parameters.

Example:
public class DaughterRule extends Rule {

 public void infer(Child child) {
 if (!(child instanceof Daughter) && !child.getSubject().isMale()) {
 post(new Daughter(child.getSubject(), child.getObject()));
 }
 }
}

New facts can be posted to other rules either by post() method or by simply returning a
value from infer() method as shown below. These two methods are equivalent and can be
combined. Null values are not posted to rules.
public GrandDaughter infer(Daughter daughter, Parent parent) {
 return daughter.getObject().equals(parent.getObject())
 ? new GrandDaughter(daughter.getSubject(), parent.getSubject())
 : null;

}

In addition to infer() methods rules can implement accept() methods. These methods are
used to filter objects which are passed to multi-fact (multi-parameter) infer() methods.

Example:
public class TckRule extends Rule {

 /**
 * This method filters invoices so only unpaid ones are passed to <code>infer(customer,
invoice)</code>
 * @param invoice
 * @param acceptInfo
 */
 public boolean accept(Invoice invoice, AcceptInfo acceptInfo) {
 return !"paid".equals(invoice.getStatus());
 }

 /**
 * If the credit limit of the customer is greater than the amount of the invoice
 * and the status of the invoice is unpaid then decrement
 * the credit limit with the amount of invoice and set the status of the
 * invoice to paid.
 * @param customer
 * @param invoice
 */

 12

http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/products/hammurapirules/downloads.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Rule.html

Hammurapi rules User Guide

 public void infer(Customer customer, Invoice invoice) {
 if (customer.getCreditLimit()>invoice.getAmount()) {
 customer.setCreditLimit(customer.getCreditLimit()-invoice.getAmount());
 invoice.setStatus("paid");
 }
 }
}

If a rule implements single-argument remove() method(s) then this method(s) will be invoked
when objects are removed from knowledge base. Collection manager and handle manager,
which will be described later, take care of removing objects from internal collections. Therefore
rules rarely need to implement remove() methods themselves.

Negation

Negation is a way to say "this fact is not true". In Hammurapi rules object which negates other
object shall implement biz.hammurapi.rules.Negator. When a negator is posted to the
knowledge base, all facts/conclusions which are directly negated by the negator are removed
from the knowledge base. Also all conclusions based on facts/conclusions directly negated by
the negator are removed from the knowledge base.

Example: From the facts that "John is a 45 years old male", "Jim is a child of John", and "Mary
is a child of Jim" we came to a conclusion that "John is a grandfather of Mary". If we post a
negator that negates "Mary is a child of Jim", it will also negate "John is a grandfather of Mary"
because it is inferred from "Mary is a child of Jim". Both these facts will be removed from the
knowledge base.

Composite classes may choose to implement biz.hammurapi.rules.Negatable interface.
biz.hammurapi.rules.Conclusion class implements this interface. It is recommended to use
this class as a base class for conclusions. Conclusion class also has object2Negator()
convenience method.

A fact can be a negator at the same time. For example, because a person can have only one
mother, the fact that "Nancy is Jim's mother" would negate "Margaret is Jim's mother".

Negations is a powerfult feature and shall be used with care because negated facts and
conclusion are removed from the knowledge base and disappear. As such bugs in negation
logic it can be difficult to debug. A word of advice is to add logging statements to negates()
and isNegatedBy() methods.

Updating and removing facts

When removeObject() is invoked, Hammurapi rules posts a negator of this object to the
knowledge base. The object being removed and also all conclusions based on this object get
removed from the knowledge base.

As stated in the specification update is equivalent to removal of object from the knowledge
base and then adding new/modified object the knowledge base.

 13

http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Negator.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Negatable.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Conclusion.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Conclusion.html#object2Negator%28java.lang.Object,%20biz.hammurapi.rules.Negator%29

Hammurapi rules User Guide

Hammurapi rules can automatically detect changes in some types of facts and invoke Rule's
update() method for changed objects. This feature is described in more detail in the
Archtecture section.

Parameterization

Rules can be parameterized. To be parameterizable, a rule shall implement proper setters and
the XML rule descriptor shall contain corresponding elements.

The code snippets below show fragments of the Validator class source and its XML definition
in the rule set.
public class Validator extends Rule {

 ...

 private int legalAge;

 /**
 * Age when people are allowed to marry
 * @param legalAge
 */
 public void setLegalAge(int legalAge) {
 this.legalAge = legalAge;
 }

 /**
 * Validates that difference between parent and child age is not less than legal age.
 * @param mother
 */
 public void validate(Parent parent) {
 if (parent.getSubject().getAge()-parent.getObject().getAge()<legalAge) {
 post(new SuspectParentRelationship(parent, parent.getSubject() + " was under
legal age when "+parent.getObject()+" was born. Please verify input data."));
 }
 }
}
...
 <rule type="biz.hammurapi.rules.tutorial.rules.Validator">
 <name>Validates conclusions</name>
 <description>Contains a number of different validations.</description>

 <legalAge>18</legalAge>
 </rule>
...

Parameters are instantiated and injected into rules by the means of DomConfigFactory, which
allows to instantiate and initialize a wide variety of Java classes including collections and
maps. Parameterization with maps is one of ways of implementing decision tables.

Rules can also access other components and rule engine properties using the naming bus. For
example to access property "foo", which was set when rule set was registered or when the rule
session was created, a rule can use get("/@foo") method call.

Creating a rule set
Once rules are written, they shall be assembled into a rule set. Hammurapi rules rule sets are
defined in XML. All aspects of the rule set XML definition will be described below. Here we'll
just mention that typically you'd need to take a template definition and then change its name,

 14

http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Rule.html
http://wiki.hammurapi.biz/index.php?title=Hammurapi_rules#Architecture
http://www.hammurapi.biz/products/hammurapirules/doc/tutorial/api/biz/hammurapi/rules/tutorial/rules/Validator.html
http://wiki.hammurapi.biz/index.php?title=Common_config.DomConfigFactory

Hammurapi rules User Guide

description, and rule definitions under rules element. The sample below shows the rule set
for Hammurapi rules Technology Compatibility Kit.
<ruleset type="com.pavelvlasov.config.ElementNameDomConfigurableContainer">

 <name>Hammurapi Rules TCK for JSR-94</name>
 <description>This is rule set used in JSR-94 TCK (Technology Compatibility Kit)</description>

 <handle-manager type="biz.hammurapi.rules.IdentityHandleManager"/>

 <collection-manager type="biz.hammurapi.rules.PojoCollectionManager"/>

 <rules type="biz.hammurapi.rules.QueueingRulesContainer">
 <rule type="biz.hammurapi.rules.jsr94.tck.TckRule">
 <name>TCK Rule</name>
 <description>If the credit limit of the customer is greater than the amount of the invoice
 and the status of the invoice is unpaid then decrement
 the credit limit with the amount of invoice and set the status of the
 invoice to paid.</description>
 </rule>
 </rules>
</ruleset>

Registering a rule set
The JSR-94 API requires that a rule set shall be registered before it can be used. This
approach decouples rule set providers from rule set consumers. It is similar to Oracle's TNS
names and thick JDBC client, and to Microsoft's ODBC DSN's.

There are two ways to register a rule set in Hammurapi rules. They are described below.

With the command line utility
hradmin register <uri> -f <file>

Programmatically
String ruleServiceProviderClassName = "biz.hammurapi.rules.jsr94.FileRuleServiceProvider";
Class.forName(ruleServiceProviderClassName);
RuleServiceProvider serviceProvider =
RuleServiceProviderManager.getRuleServiceProvider(ruleServiceProviderClassName);
RuleAdministrator administrator = serviceProvider.getRuleAdministrator();
RuleExecutionSetProvider resp = administrator.getRuleExecutionSetProvider(null);
RuleExecutionSet res = resp.createRuleExecutionSet(DOMUtils.parse(new
File(ruleSetFile)).getDocumentElement(), properties);
administrator.registerRuleExecutionSet(uri, res, null);

NOTE: While being a valuable feature, registration of rule sets sometimes becomes a
hindrance. For example, when a rule engine is used from an applet and needs to load rule set
definition from URL. Hammurapi rules solves this problem by using a special form of rule set
URI. If URI starts with "direct:", then the rest of the URI is treated as a rule set URL and the
rule set is loaded from that URL instead of the registrations file. Hammurapi rules can also
load rule sets from class loader resources.

Troubleshooting
In Hammurapi rules conclusions and derivations are XML-serializable. If you wonder how
some particular conclusion was derived, you can dump it to XML and then browse derivation
tree in a browser. The sample below shows how to dump conclusions to an XML file.

 15

Hammurapi rules User Guide

DOMUtils.serialize(objects, "conclusions", new File("conclusions.xml"));

Here is the XML output.

Figure 1 Conclusion browser

You can also use Browser class to visualize consclusions and derivations in the Swing GUI as
shown in the code snippet below and on Figure 1.
Browser.show(objects, "Family relationships");

Persisting knowledge base
Out of the box handle manager and collection manager implementations hold knowledge base
in memory. To make knowledge base persistent it is generally recommended to provide
application-specific implementations of the managers.

Another option is to use the out-of-the-box managers and provide them a reference to
ObjectStorage implementation. Hammurapi rules comes with FileObjectStorage class which
implements ObjectStorage and uses Java serialization to read/write object from/to a file.

Distributed inference
With Hammurapi rules it is possible to build a distributed rule engine. This can be achieved by
adding "remote rules" to the rule set. Remote rule will send objects dispatched to it to remote
engines and post objects received from remote engines to the object bus. A number of
communication mechanizms can be used for rules communications e.g. JMS or JGroups

 16

http://www.hammurapi.biz/products/hammurapirules/conclusions.xml
http://www.hammurapi.biz/products/common/doc/api/com/pavelvlasov/swing/Browser.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/ObjectStorage.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/FileObjectStorage.html
http://en.wikipedia.org/wiki/Java_Message_Service
http://www.jgroups.org/javagroupsnew/docs/index.html

Hammurapi rules User Guide

Architecture

Administrative interface

Figure 2. Administrative interface
Administrative part of the Hammurapi rules' JSR-94 implementation deals with management
of rule set definitions in .hammurapi-rules/registrations.xml file in the user home
directory. Also Hammurapi rules provides a command line administration utility.

NOTE: Rule set registration URI's shall not start with direct: because it is a reserved URI
prefix for direct loading of unregistered rulesets at runtime. Direct loading might be needed if
you distribute rule sets bundled with your product. In such a case you can store them as a
classloader resource and use direct:resource:<rule set resource path> URI to
load the rule set at runtime. Another scenario is to host rule sets on your web site and use
them directly from your product without requiring user to explicitly register rule sets in order to
make the product operational.

Registrations file XML format
• The root element is registrations.

• The root element contains multiple registration elements.

 17

http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRulesAdmin.gif

Hammurapi rules User Guide

• registration element has a mandatory uri attribute.

• It also must contain either ref attribute which contains a reference (URL) to an external
rule set definition or definition element which holds a rule set definition.

• Optionally, there can be properties element which holds XML-ized property map
passed to createRuleExecutionSet() methods.

This is an outline of the registrations file structure:
<registrations>
 <registration uri="RuleSet1" ref="http://www.mysite.com/myrules.xml"/>

 <registration uri="RuleSet2">
 <definition>
 ...
 </definition>

 <properties>
 ...
 </properties>
 <registration>
<registrations>

Rule set XML format
Rule set XML definitions are used by both runtime and adminitrator API's. At runtime
DomConfigFactory is used to instantiate the engine class specified in the mandatory type
attribute.

The name of the root element doesn't matter. The root element's class should implement
Context interface. It is recommended to use subclasses of DomConfigurableContainer,
ElementNameDomConfigurableContainer in particular as the root object. We recommend to use
ruleset as the root element name.

The root element shall have the following subelements:

• name - Ruleset name.

• description - Ruleset description.

• rules - Container of rules with rule subelements.

• handle-manager - Handle manager.

• collection-manager - Collection manager.

• knowledge-compactor - Optional knowledge compactor.

• Default object filter can be optionally defined in object-filter element's type
attribute.

Example of rule set definition
<ruleset type="com.pavelvlasov.config.ElementNameDomConfigurableContainer">

 18

http://wiki.hammurapi.biz/index.php?title=Common_config.DomConfigFactory
http://www.hammurapi.biz/products/common/doc/api/com/pavelvlasov/config/Context.html
http://wiki.hammurapi.biz/index.php?title=Common_config.DomConfigurableContainer
http://www.hammurapi.biz/products/common/doc/api/com/pavelvlasov/config/ElementNameDomConfigurableContainer.html

Hammurapi rules User Guide

 <name>Family ties</name>
 <description>Infers familty relationships from gender and parent/child relationship</description>

 <handle-manager type="..."/>

 <collection-manager type="..."/>

 <rules type="...">
 <rule type="...">
 <name>Grandmother</name>
 <description>Infers 'grandmother' relationship from 'mother' and 'child'
relationships.</description>
 ...
 </rule>

 ...
 </rules>
</ruleset>

There can be additional elements supporting work of the mandatory components. For
example, a thread pool declaration. Rule set XML structure reflects rule engine runtime
structure which is shown on Figure 3. Its components are described below.

Runtime components

 19

http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRulesRuntime.gif

Hammurapi rules User Guide

Figure 3. Runtime architecture
• Rules are Java objects which are "plugged" into the Object bus and the Naming bus.

• Object bus dispatches objects (facts) to matching rules' infer() methods.

• Naming bus allows engine components to locate each other.

• Handle manager keeps references to knowledge base objects (posted facts and
inferred conclusions).

• Collection manager manages collections for multi-parameter infer() methods.

• JSR-94 facade (implementation of RuleSession) coordinates work of the engine
components.

• Thread pool can be used for multi-threaded inference. It is shown as an example of an
optional component, which can be located through the naming bus and used by other
components.

Object bus internals
The Object bus is built on classes in biz.hammurapi.dispatch package. The job of the Object
bus is to dispatch objects posted to the bus to rules' methods which can take those objects as
arguments i.e. object instanceof argument type evaluates to true. Needless to say
that the Object bus shall do its job in the most efficient manner; as such a simple iteration over
all rules' methods is not an option. Figure 3. shows the internal structure of the Object bus.

[edit]

Invocation handlers

Rules are "plugged" into the Object bus by "invocation handlers". Definition of the invocation
handler interface is shown below
public interface InvocationHandler {

 /**
 * Invokes target method. Passes returned value(s) to result consumer.
 * The target "method" might be invoked multiple times, e.g. in composite
 * invocation handler scenario.
 * @param parameter
 * @param resultConsumer
 * @throws Throwable
 */
 void invoke(Object arg, ResultConsumer resultConsumer) throws Throwable;

 /**
 * This method is used to build invocation network.
 * @return Invocation parameter type. Null if parameter type is unknown.
 */
 Class getParameterType();
}

. One rule can expose one or more invocation handlers to the bus.

 20

http://www.hammurapi.biz/products/hammurapirules/jsr94/api/javax/rules/RuleSession.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/dispatch/package-frame.html
http://wiki.hammurapi.biz/index.php?title=Hammurapi_rules&action=edit§ion=23
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/dispatch/InvocationHandler.html

Hammurapi rules User Guide

Subclasses of Rule (Java rules) introspect themselves in the constructor and create an
invocation handler for each parameter of infer() methods and a remove handler for each
remove() method. accept() methods are connected to matching multi-parameter infer()
methods' handlers as shown on Figure 5.

Rule class for a specialized rules language (see below) would need to parse rule's context
definition and create an invocation handler for each declared context object.

Figure 4. Object bus
The bus collects invocation handlers from rules and organizes then into buckets. There is an
internal map which maps classes to buckets. One handler can be put to multiple buckets. E.g.
a handler which takes java.util.Collection will be put to java.util.LinkedList,
java.util.ArrayList buckets and to buckets of other classes which implement
java.util.Collection.

Dispatching

When an object is posted to the bus it is put to the internal queue. The queue is needed for
multithreaded inference and also to prevent reentrancy because reentrancy would be a real
headache collection management wise. There is a queue processing thread which retrieves
objects from the queue and either posts them to a thread pool attached to the engine for
processing or processes them by itself if there is no thread pool to delegate this job to.

During object processing a bucket for object's types is retrieved from the map and all handlers
in the bucket are invoked. If there is no bucket for a given type, then it gets created.

 21

http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_ObjectBus.jpg
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Rule.html

Hammurapi rules User Guide

Example: The object's class implements multiple interfaces. Rules don't use the object's class
per se in infer() methods' parameters, but only some interfaces implemented by this class.
In this case a bucket for the object's class will not be created at rule engine start because the
rule engine has no knowledge about this class. A bucket will be created only when an instance
of the class is posted to the bus.

In Java rules return values from infer() methods and arguments of post() methods are
posted to the bus. Null values are not posted.

Figure 5. Multi-fact inference

Multi-parameter infer() methods and collection manager

If you were carefully reading the document, you should ask by this point: "How is it possible to
invoke multi-parameter infer() methods if objects are posted to the bus one by one?" This is
a very good question. And the answer is: "This is where the collection manager comes into
play". For each parameter in a multi-parameter infer() method an invocation handler is
created and is put to the appropriate Object bus' buckets. This invocation handler retrieves a
collection from the collection manager. The collection name consists of rule name, method
signature and parameter index. When an object is dispatched to the handler, the handler adds
the object to the parameter's collection. If collection's add() method returns true, then other
method's parameters' collections are iterated and all permutations of the dispatched object and
elements in other method's collections are passed to the method. Figure 5. demonstrates the
concept.

If the rule's condition includes predicates which involve only one parameter, then it is
recommended to implement accept() method for this parameter. The accept() method
must take two parameters and return boolean. The first parameter must be of the same type
as the matching infer() method parameter. The second parameter must be of type
AcceptInfo. Accept methods filter input objects. By doing so they reduce collections size and
improve performance. The code snippet below demonstrates how to use accept() methods.
public class TckRule extends Rule {

 /**

 22

http://wiki.hammurapi.biz/index.php?title=Image:HamurapiRules_JoinRule.jpg
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Rule.AcceptInfo.html

Hammurapi rules User Guide

 * This method filters invoices so only unpaid ones are passed to <code>infer(customer,
invoice)</code>
 * @param invoice
 * @param acceptInfo
 */
 public boolean accept(Invoice invoice, AcceptInfo acceptInfo) {
 return !"paid".equals(invoice.getStatus());
 }

 /**
 * If the credit limit of the customer is greater than the amount of the invoice
 * and the status of the invoice is unpaid then decrement
 * the credit limit with the amount of invoice and set the status of the
 * invoice to paid.
 * @param customer
 * @param invoice
 */
 public void infer(Customer customer, Invoice invoice) {
 if (customer.getCreditLimit()>invoice.getAmount()) {
 customer.setCreditLimit(customer.getCreditLimit()-invoice.getAmount());
 invoice.setStatus("paid");
 }
 }
}

The acceptInfo parameter is needed to differentiate infer() methods and parameters. For
example, a rule may have multiple infer() methods which take parameters of the same
type; some rules may have one infer() method taking several parameters of the same type.
In such situation one accept() method will be bound to all parameters of the same type and
acceptInfo will be a discriminator allowing to switch filtering logic.

New invocation semantics
Probably the best way for a Java developer to grasp Hammurapi rules concepts is to think
about the object bus and dispatching as one more way to invoke a method.

Java language itself provides several semantics of invocation, i.e. binding a method call (e.g.
println(a)) with the body of code (e.g. println(java.lang.String) method body if a
is of type String). Java built-in invocation semantics include method overloading, method
overriding, implementation of abstract methods, ...

Web developers are familiar with the concept that when servlet container receives HTTP
request it eventually translates into Servlet.service() invocation, but before that several
Filter.doFilter() methods might be invoked.

J2EE developers know that call of create() method in EJB home interface translates into
invocation of ejbCreate() method of the enterprise bean.

Hammurapi rules continues the tradition and Hammurapi rules developers shall remember
that call of addObject() eventually translates into invocation of infer() rule methods with
formal parameters compatible with object's type. The trick, though, is that in the case of servlet
or EJB there is one-to-one relationship between the stimulus (HTTP request or create() call)
and response (invocation of service() or ejbCreate()) and the response is synchronous.
In Hammurapi rules it is valid only for single-parameter infer() methods. In the case of

 23

Hammurapi rules User Guide

multi-parameter infer() methods the relationship between stimulus and response is one-to-
many and the response may be deferred.

Autodetection of updates
Hammurapi rules can detect updates in objects of sertain types passed to infer() methods
as parameters. When it is detected that an object passed to rule's infer() method as a
parameter has changed inside the method, the rule's update() method is invoked with the
changed object as parameter. Changes can be detected in instances of Versioned and
Observable. If some class implements both the interfaces, then Versioned is used for change
detection because it is more efficient.

The update() method is invoked after infer() method returns. Therefore, it is invoked only
once per changed object even if there have been multiple modifications of the object inside
infer() method.

Notes

• SQLC-generated classes implement both Versionable and Observable interfaces which
makes them a good choice for the application object model.

• Aspect Oriented Programming can "introduce" Versioned or Observable interfaces to
existing classes either at compile time or at class loading time.

Lifecycle of rule engine components
Lifecycle of rule engine components is managed by DomConfigurableContainer. Here is a
synopsis of the component lifecycle

• Component is instantiated from XML definition by DomConfigFactory.

• Component is configured by DomConfigFactory.

• If component's class implements com.pavelvlasov.config.Component, then

o Component's setOwner() method is invoked to give the component access to
the naming bus.

o When engine's start() method is invoked as part of rule session initialization,
the engine invokes component's start() method.

o When engine's stop() method is invoked from rule session's release()
method, the engine invokes component's stop() method.

 24

http://www.hammurapi.biz/products/common/doc/api/com/pavelvlasov/util/Versioned.html
http://www.hammurapi.biz/products/common/doc/api/com/pavelvlasov/util/Observable.html
http://www.hammurapi.biz/products/common/doc/api/com/pavelvlasov/util/Versioned.html
http://wiki.hammurapi.biz/index.php?title=SQLC
http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://wiki.hammurapi.biz/index.php?title=Common_config.DomConfigurableContainer
http://wiki.hammurapi.biz/index.php?title=Common_config.DomConfigFactory
http://wiki.hammurapi.biz/index.php?title=Common_config.DomConfigFactory
http://www.hammurapi.biz/products/common/doc/api/com/pavelvlasov/config/Component.html

Hammurapi rules User Guide

Tutorial
Hammurapi rules tutorial demonstrates a rule set which infers multiple family relationships
from Child and Spouse relationships.

Tutorial files can be downloaded from the Hammurapi rules download page.

In this section we'll take a look at several code snippets and also explore how to register the
tutorial rule set and run it.

Installation
• Download Hammurapi rules and tutorial files from the Hammurapi rules download

page.

• Install Hammurapi rules as described in Installation section.

• Unzip tutorial files.

Looking inside
In Tarantino's fashion we'll start with the final scene, and then we'll unwind the mystery of
getting there. The listing below is the main() method of the tutorial.

All characters in this tutorial and their relationships are fictitious and are used solely to
demonstrate features of Hammurapi rules; and any resemblance to actual persons, living or
dead, is entirely coincidental.
1 System.out.println("Hammurapi rules tutorial");
2
3 if (args.length!=1) {
4 System.out.println("Usage: java <options> biz.hammurapi.rules.tutorial.Tutorial <rule set
uri>");
5 System.exit(1);
6 }
7
8 String ruleServiceProviderClassName = "biz.hammurapi.rules.jsr94.FileRuleServiceProvider";
9 Class.forName(ruleServiceProviderClassName);
10 RuleServiceProvider serviceProvider =
RuleServiceProviderManager.getRuleServiceProvider(ruleServiceProviderClassName);
11 RuleRuntime runtime = serviceProvider.getRuleRuntime();
12 System.out.println("Loading rule set from "+args[0]);
13 StatefulRuleSession session = (StatefulRuleSession) runtime.createRuleSession(args[0], null,
RuleRuntime.STATEFUL_SESSION_TYPE);
14
15 Person kate = new Person("Kate", 58, false);
16 Person victor = new Person("Victor", 63, true);
17 session.addObject(new Spouse(kate, victor));
18
19 Person peter = new Person("Peter", 37, true);
20 session.addObject(new Child(peter, kate));
21 session.addObject(new Child(peter, victor));
22
23 Person alison = new Person("Alison", 36, false);
24 session.addObject(new Spouse(peter, alison));
25
26 Person lucy = new Person("Lucy", 17, false);
27 session.addObject(new Child(lucy, alison));

 25

http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/products/hammurapirules/downloads.html
http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/products/hammurapirules/downloads.html
http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/products/hammurapirules/downloads.html
http://wiki.hammurapi.biz/index.php?title=Hammurapi_rules#Installation

Hammurapi rules User Guide

28
29 Person nancy = ew Person n("Nancy", 14, false);
30 session.addObject(new Child(nancy, peter));
31
32 Person dan = ne Person(w "Dan", 7, true);
33 session.addObject(new Child(dan, peter));
34 session.addObject(new Child(dan, alison));
35
36 Person audrey = new Pers on("Audrey", 4, false);
37 session.addObject(new Child(audrey, peter));
38 session.addObject(new Child(audrey, alison));
39
40 Person tanya = ew Perso n n("Tanya", 31, false);
41 Person max = new Person("Max", 32, true);
42 session.addObject(new Spouse(tanya, max));
43 session.addObject(new Child(tanya, kate));
44 session.addObject(new Child(tanya, victor));
45
46 Person vilma = new Person("Vilma", 14, false);
47 session.addObject(new Child(vilma, tanya));
48
49 Person george = new Person("George", 10, true);
50 session.addObject(new Child(george, tanya));
51
53 Person lisa = n w Persone ("Lisa", 5, false);
53 session.addObject(new Child(lisa, tanya));
54 session.addObject(new Child(lisa, max));
55
56 s . ulession executeR es();
57
58 // Exclude alr dy knownea .
59 ObjectFilter of = new ObjectFilter() {
60
61 public Object filter(Object arg) {
62 return arg instanceof Conclusion && ((Conclusion) arg).getDepth()==0 ? null : arg;
63 }
64
65 public void reset() { }
66
67 };
68
69 List objects = ew Arrayn List(session.getObjects(of));
70 Collections.sort(
71 objects,
72 new Comparator() {
73
74 public int compare(Object o1, Object o2) {
75 return o1.toString().compareTo(o2.toString());
76 }
77
78 });
79
80 session.release); (
81
82 Iterator it=obj cts.itere ator();
83 for (int i=1; it.hasNext(); i++) {
84 System.out.println(i + ": "+it.next());
85 }
86
87 DOMUtils.serial ze(objeci ts, "conclusions", new File("conclusions.xml"));
88
89 Browser.showAndExitOnClose(objects, "Family relationships");

Description

• Lines 3-6 - check number of command line arguments.

• Lines 8-13 - a stateful rule session is created.

 26

Hammurapi rules User Guide

• Lines 15-54 - objects are added to the rule session.

• Lines 56-69 - we retrieve only inferred conclusions from the knowledge base.

• Lines 70-78 - conclusions are sorted alphabetically

• Line 80 - session is released, object bus' queue processing thread is stopped

• Lines 82-85 - conclusions are printed to console.

• Line 87 - conclusions are stored to a file in XML format.

• Line 89 - conclusions are displayed in a GUI browser.
Here is a tail of the output produced by the code above. The output shows inferred Victor's
family relationships.
90: Victor [male 63] is a Father of Peter [male 37] (2/1)
91: Victor [male 63] is a Father of Tanya [female 31] (2/1)
92: Victor [male 63] is a GrandFather of Audrey [female 4] (3/1)
93: Victor [male 63] is a GrandFather of Dan [male 7] (3/1)
94: Victor [male 63] is a GrandFather of George [male 10] (3/1)
95: Victor [male 63] is a GrandFather of Lisa [female 5] (3/1)
96: Victor [male 63] is a GrandFather of Nancy [female 14] (3/1)
97: Victor [male 63] is a Husband of Kate [female 58] (2/1)

Figure 6. Conclusions class hierarchy
Figure 6. shows the hierarchy of conclusions. All conclusions in the tutorial have a constructor
which takes two arguments of type Person. The first argument is the subject of the relationship

 27

http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_TutorialConclusions.jpg
http://www.hammurapi.biz/products/hammurapirules/doc/tutorial/api/biz/hammurapi/rules/tutorial/facts/Person.html

Hammurapi rules User Guide

and the second is the object. Relative is the superclass for all conclusions in the tutorial. It's
toString() method outputs conclusion as follows:
<subject> is a <conclusion name> of <object>

For example, "Peter is a Husband of Alison". In this example Peter is the subject, Alison is
the ojbect and Husband is the name of relationship.
public class Husband extends Spouse {
 public Husband(Person subject, Person object) {
 super(subject, object);
 }

}

The code snippet above is an example of a conclusion class.

 28

http://www.hammurapi.biz/products/hammurapirules/doc/tutorial/api/biz/hammurapi/rules/tutorial/conclusions/Relative.html

Hammurapi rules User Guide

Figure 7. Rule classes

 29

http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_TutorialRules.jpg

Hammurapi rules User Guide

Figure 7. shows rules classes with their infer() methods. The listing below shows source
code of one of rules
public class SpouseRules extends Rule {

 /**
 * Male spouse is husband, female spouse is wife.
 * If A is a spouse of B then B is a spouse of A.
 * @param spouse
 * @return Brother or Sister.
 */
 public Spouse infer(Spouse spouse) {
 post(new Spouse(spouse.getObject(), spouse.getSubject()));

 if (spouse.getSubject().isMale()) {
 if (!(spouse instanceof Husband)) {
 return new Husband(spouse.getSubject(), spouse.getObject());
 }
 } else {
 if (!(spouse instanceof Wife)) {
 return new Wife(spouse.getSubject(), spouse.getObject());
 }
 }
 return null;
 }
}

Notice the first line in the infer() method. This line posts a new Spouse to the bus with
subject and object swapped. If that new spouse were directly dispatched to the rules it would
come to this method again and it would cause an infinite loop. Hammurapi rules keeps a
collection of weak references to objects recently posted to the object bus and detects loops of
this type for subclasses of Conclusion. Derivation trees of equal conclusions are merged. I.e. if
a conclusion is posted on the bus and there is a recent conclusion which is equals to the new
one, then it means that there are several ways to come to the same conclusion, and
derivations are merged. This is important for negation because it is possible that one of
conclusion's derivation is negated, but some other is not. A conclusion is negated if all of its
derivations are negated.
<ruleset type="com.pavelvlasov.config.ElementNameDomConfigurableContainer">

 <name>Family ties</name>
 <description>Infers familty relationships from gender and parent/child relationship</description>

 <handle-manager type="biz.hammurapi.rules.KnowledgeMaximizingHandleManager"/>

 <collection-manager type="biz.hammurapi.rules.PojoCollectionManager">
 <collectionType>biz.hammurapi.rules.KnowledgeMaximizingSet</collectionType>
 </collection-manager>

 <rules type="biz.hammurapi.rules.QueueingRulesContainer">
 <rule type="biz.hammurapi.rules.tutorial.rules.SiblingRules">
 <name>Sibling rules</name>
 <description>Infers sibling, brother and sister relationships.</description>
 </rule>

 <rule type="biz.hammurapi.rules.tutorial.rules.SpouseRules">
 <name>Spouse rules</name>
 <description>Infers wife and husband relationships.</description>
 </rule>

 <rule type="biz.hammurapi.rules.tutorial.rules.ParentChildRules">
 <name>Parent and Child rules</name>
 <description>Infers parent from child and child from parent</description>
 </rule>

 <rule type="biz.hammurapi.rules.tutorial.rules.ParentRules">

 30

http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Conclusion.html

Hammurapi rules User Guide

 <name>Parent rules</name>
 <description>Infers father and mother from parent</description>
 </rule>

 <rule type="biz.hammurapi.rules.tutorial.rules.SonRule">
 <name>Son rule</name>
 <description>Infers son from child</description>
 </rule>

 <rule type="biz.hammurapi.rules.tutorial.rules.DaughterRule">
 <name>Daughter rule</name>
 <description>Infers daughter from child</description>
 </rule>

 <rule type="biz.hammurapi.rules.tutorial.rules.GrandRules">
 <name>Grand... rules</name>
 <description>Infers grandmother, grandfather, grandson and granddaughter</description>
 </rule>

 <rule type="biz.hammurapi.rules.tutorial.rules.SecondaryRules">
 <name>Infers secondary relatives</name>
 <description>Infers ant, uncle, niece, nephew, and cousin relationships.</description>
 </rule>

 <rule type="biz.hammurapi.rules.tutorial.rules.Validator">
 <name>Validator</name>
 <description>Contains a number of different validations.</description>
 <legalAge>18</legalAge>
 </rule>

 </rules>
</ruleset>

Above you see the rule set definition. There are two lines in this file which requre elucidation.
These are ones with KnowledgeMaximizingHandleManager and KnowledgeMaximizingSet.
Knowledge maximization (supersession) is the act of replacing less specific facts or conclusion
with more specific. There is Supercedable interface with supercedes() method. This method
returns true it its instance is more specific than the argument of the method.

Conclusion class implements Supercedable interface. In the case of Conclusion,
supercedes() returns true if this conclusion class is a subclass of the argument's class and
all slots are equal. For example, conclusion that Mary is a mother of Joe is more specific than
that Mary is a parent of Joe and as such the first one supercedes the second.

In our case as soon as we know that "A is a father of B" we don't need to know that "A is a
parent of B" because Father class is a subclass of Parent and can be used in all places
where Parent is used.

KnowledgeMaximizingSet doesn't add supercedable instances to self if there are instances
superceding the instance being added in the set already. In the reverese situation, if an object
being added supercedes any of set elements those elementsare removed from the set. For
example, if a set contains "A is a parent of B" and we add "A is a father of B" then "A is a father
of B" will be added, and "A is a parent of B" will be removed from the set. On the other hand if
the set contains "A is a father of B", then "A is a parent of B" will not be added to the set.

KnowledgeMaximizingHandleManager operates in a similar fashion, but superceded objects are
not removed but "rebound". E.g. we add "A is a parent of B" to the rule engine and obtain a
handle. Then the engine comes to a conclusion that "A is a father of B". The handle manager

 31

http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/KnowledgeMaximizingHandleManager.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/KnowledgeMaximizingSet.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Supercedable.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Conclusion.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/KnowledgeMaximizingSet.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/KnowledgeMaximizingHandleManager.html

Hammurapi rules User Guide

will rebind the handle to the new conclusion. When we invoke getObject(Handle) for the
handle obtained from adding "A is a parent of B", we'll get "A is a father of B".

Running tutorial
To run the tutorial code you need to execute hrtutorial command file. It takes a single
argument, a rule set URI.

Direct loading of the rule set

Execute
hrtutorial direct:file:familyties.xml

to load the rule set directly from a file.

Registering the rule set

Execute
hradmin register familyties -f familyties.xml

to register the rule set and then
hrtutorial familyties

to run it. You can also try
hradmin dump familyties -f report.html -H

to produce a rule set HTML report. Then try to parameterize Validator by executing
hradmin register familyties-customized -f familyties.xml -R Validator:legalAge=16

Notice the difference in output when you run
hrtutorial familyties-customized

List registered rule sets

As the last exercise print a list of registered rule sets
hradmin list
Hammurapi Rules administrator. Copyright (C) 2006 Hammurapi Group

Rule sets registrations

URI: familyties
Name: Family ties
Description: Infers familty relationships from gender and parent/child relationship

URI: familyties-customized
Name: Family ties
Description: Infers familty relationships from gender and parent/child relationship

TO-DO
There are TODO comments in the SecondaryRules class. Inference of Niece and Nephew is
not fully implemented. This is an exercise left for you, dear reader.

 32

Hammurapi rules User Guide

Validator
You probably noticed Validator class on Figure 7. This class doesn't have infer() methods,
but rather validate() methods.

Here is a fragment of Validator code.
public class Validator extends Rule {

 public Validator() {
 super("validate", "remove", "accept");
 }

 /**
 * A person cannot be a relative of self.
 * @param relative
 */
 public void validate(Relative relative) {
 if (relative.getSubject().equals(relative.getObject())) {
 post(new BadFact(relative, "A person cannot be a relative of self"));
 }
 }

...

The first thing to notice is that it uses non-default superclass constructor. By doing so it
changes the default name for inference methods from infer to validate, which makes the
rest of the code more understandable. The other thing to notice that validate() method
posts BadFact instance to the knowledge base. This class implements Negator interface and
as such negated fact and all conclusions based on this fact are removed from the knowledge
base.

Validator vs. negators

In this tutorial we chose to implement validations with Validator class. Another option would
be to have some conclusions implement Negator interface. For example,

• CloseRelative would negate any other close relative with equal slots.

• Mother would negate other mothers with the same subject.

• Spouse would negate other spouses with the same subject (in monogamic countries).

In the case of Validator we retained the fact which was posted earlier than the other
conflicting fact. The other fact, which was posted later, was discarded. Though, in the case of
negators, a fact posted later to the bus will be retained and facts which it negates will be
removed from the knowledge base (unless retain-negators attribute of the rule set is set
to "yes").

Also, in the first case all logic is located in rules, but the negators approach spreads the logic
between conclusions and rules.

The rule of thumb is to put only "hard-wired" logic to fact and conclusion classes. Volatile and
parameterizable logic shall reside in rules. E.g. "self-relative" validation could be implemented
in Relative constructor so it would throw IllegalArgumentException. A person can have

 33

http://www.hammurapi.biz/products/hammurapirules/doc/tutorial/api/biz/hammurapi/rules/tutorial/rules/Validator.html
http://www.hammurapi.biz/products/hammurapirules/doc/tutorial/api/biz/hammurapi/rules/tutorial/conclusions/BadFact.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Negator.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/Negator.html
http://www.hammurapi.biz/products/hammurapirules/doc/tutorial/api/biz/hammurapi/rules/tutorial/rules/Validator.html
http://www.hammurapi.biz/products/hammurapirules/doc/tutorial/api/biz/hammurapi/rules/tutorial/conclusions/Relative.html

Hammurapi rules User Guide

only one biological mother and as such Mother shall negate other mothers with the same
object.

On the other hand, beacuse legal age may be different in different countries, this validation
shall be in rules, not in the Child or Parent conclusion classes.

 34

http://www.hammurapi.biz/products/hammurapirules/doc/tutorial/api/biz/hammurapi/rules/tutorial/conclusions/Child.html
http://www.hammurapi.biz/products/hammurapirules/doc/tutorial/api/biz/hammurapi/rules/tutorial/conclusions/Parent.html

Hammurapi rules User Guide

Administrative command line utility
Hammurapi rules distribution contains a command line utility to manage rule set registrations.
The name of the utility is hradmin. The utility provides four commands:

• register - Adds a rule set to the registrations file.

• deregister - Removes a rule set with a given URI from the registrations file.

• list - produces a report about registered rule sets in text, XML or HTML format. Outputs
the report to console or to a file.

• dump - produces a report about a registered rule set with a given URI in text, XML or
HTML format. Outputs the report to console or to a file. .

If you run hradmin with no arguments or wrong arguments it outputs the following information
Hammurapi Rules administrator. Copyright (C) 2006 Hammurapi Group
Unrecognized command: -h
Usage: hradmin command [options]
 Commands:
 register <uri> {-f <file> | -u <url> | -r <url>} [-p <name>=<value>] [-R <rule
name>:<property name>=<property value>] [-o <object filter>]- Registers rule set.
 deregister <uri> - Unregisters rule set.
 list [-f <file>] {-x|-H} - Lists names of registered rule sets to console or file.
 dump <uri> [-f <file>] {-x|-H} - Outputs ruleset definition to console or file.

 Execute 'hradmin command -h' for command-specific options

register
This command registers a rule set. It can read rule set from a file or a URL. Rule sets provided
as URL's can be stored by value, i.e. The XML definition will be copied to the registrations file,
or by reference i.e. the registrations file will contain the URL per se but not the XML definition.
This allows to maintain centralized rulesets without the need to update registrations every time
the XML definition changes.

hradmin register -h outputs
Hammurapi Rules administrator. Copyright (C) 2006 Hammurapi Group
usage: hradmin register <uri> [options]
 -R <rule name>:<key>=<value> Rule property
 -f <file> Ruleset file
 -h Print this message
 -o <class name> Default object filter
 -p <key=value> Rule set property
 -r <URL> Ruleset URL to be registered by reference
 -u <URL> Ruleset URL

Options f, r and u are mutually exclusive. At least one of them must be provided.
Administrator can specify multiple rule set and rule properties. These properties are passed to
the rule set at runtime. It allows to provide user-specific parameterization of rule sets and rules
at registration time. When provided from the command prompt both key and value are treated
as instances of java.lang.String. If you need to provide properties of other types you
would need to use the API or directly edit the registrations file. Object filter and rule properties

 35

Hammurapi rules User Guide

cannot be set for rule sets registered by reference. Rule set properties can be set for any
registration type.

deregister
Removes rule set registration.

hradmin deregister -h outputs
Hammurapi Rules administrator. Copyright (C) 2006 Hammurapi Group
usage: hradmin deregister <uri> [options]
 -h Print this message

list
This command outputs a list of registered rule sets in text, html or xml format.

hradmin list -h outputs
Hammurapi Rules administrator. Copyright (C) 2006 Hammurapi Group
usage: hradmin list [options]
 -H Output in HTML format
 -f <file> Output file
 -h Print this message
 -x Output in XML format

If no options are provided then the command outputs formatted text to the console.

dump
The dump command outputs registered rule set details in different formats. If you run hradmin
dump -h a help message appears
Hammurapi Rules administrator. Copyright (C) 2006 Hammurapi Group
usage: hradmin dump <uri> [options]
 -H Output in HTML format
 -f <file> Output file
 -h Print this message
 -x Output in XML format

If no options are provided then the command outputs formatted text to the console.

 36

Hammurapi rules User Guide

JSR-94 implementation notes
Because Hammurapi rules is an implementation of JSR-94, it is recommended to get familiar
with the JSR-94 Specification. Further material assumes reader's familiarity with the
specification and concentrates on describing the most important details of Hammurapi rules'
implementation of JSR-94. See Hammurapi Rules JavaDoc for more information.

Technology compatibility kit
JSR-94 Technology compatibility kit (TCK) implementation for Hammurapi rules can be
downloaded from the Hammurapi rules download page.

The JSR-94 TCK itself is part of the JSR-94 distribution and can be downloaded from the JSR-
94 home page.

Download and unzip the JSR-94 package and then download and unzip the TCK for
Hammurapi Rules. Copy over directories ant and lib from the Hammurapi Rules TCK to the
JSR-94 directory. This operation will overwrite three files in the lib folder: tck.conf,
tck_res_1.xml, and tck_res_2.xml.

After the download and copying files run the TCK as described in the JSR-94 documentation
(jsr94_tck.pdf).

The example below shows how to do it on Windows.
C:\jsr94-1.0>set ANT_HOME=ant

C:\jsr94-1.0>ant\bin\ant -f run_tck.xml

We executed TCK tests in our environment using JDK 1.5. With JDK 1.5 tests report signature
analysis failure because of new methods added to java.lang.Exception.

TCK tests failed on JDK 1.4 because of conflicts in XML libraries between Hammurapi Rules (it
depends on javax.xml.xpath classes) and Ant 1.4.1 libraries shipped with the TCK.

Rule Service Provider
The javax.rules.RuleServiceProvider class implements a single point of access to
both runtime and administration interfaces. The rule service provider implementation class for
Hammurapi rules is biz.hammurapi.rules.jsr94.FileRuleServiceProvider The
code snippet below shows how to obtain rule service provider.
Class.forName("biz.hammurapi.rules.jsr94.FileRuleServiceProvider");
RuleServiceProvider serviceProvider =
RuleServiceProviderManager.getRuleServiceProvider("biz.hammurapi.rules.jsr94.FileRuleServiceProvider");

This provider stores registrations in .hammurapi-rules/rules.xml file in user home
directory.

 37

http://www.hammurapi.biz/hammurapi-biz/system/FileActions/get/81/jsr94_spec.pdf
http://www.hammurapi.biz/hammurapi-biz/doc/products/hammurapi-rules/api/index.html
http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-group/products/hammurapi-rules/xmenu428.html@parent=36&uplink=no.html
http://www.jcp.org/en/jsr/detail?id=94
http://www.jcp.org/en/jsr/detail?id=94

Hammurapi rules User Guide

RuleRuntime

createRuleSession(String uri, Map properties, int type)

This method creates a rule session. If uri starts with direct: then the rest of the uri is
treated as rule set source URL and the registrations file is bypassed. Direct loading might be
needed if you distribute rule sets bundled with your product. In this case you can store them as
classloader resource and use direct:resource:<rule set path> URI to load the
ruleset at runtime. Another scenario is to host rule sets on your web site and use them directly
from your product without having users to explicitly register rule sets in order to make your
product operational. Examples:

• direct:http://www.hammurapi.biz/someruleset.xml will load rule set directly from the
specified URL.

• direct:resource:biz/hammurapi/somepackage/someruleset.xml will load
rule set from a classloader resource.

XML definition of rule set is instantiated by the means of DomConfigFactory. The instantiated
object must implement com.pavelvlasov.config.Context to provide naming services. It
is recommended to use ElementNameDomConfigurableContainer, a subclass of
DomConfigurableContainer as the type of the root rule set element.

Example:
<ruleset type="com.pavelvlasov.config.ElementNameDomConfigurableContainer">
 <name>Family ties</name>
 <description>Infers familty relationships from gender and parent/child relationship</description>

 <rules type="...">
 <handle-manager type="..."/>

 <collection-manager type="..."/>

 <rule type="...">
 <name>Grandmother</name>
 <description>Infers 'grandmother' relationship from 'mother' and 'child'
relationships.</description>
 ...
 </rule>

 ...
 </rules>
</ruleset>

Properties set at registration time and properties passed in properties parameter are set as
attributes in the instantiated object. For this the instantiated definition must implement
com.pavelvlasov.util.Attributable. Values of properties provided in properties
parameter override those set at the registration time with matching keys. Rule set components
can access properties using naming bus. E.g. property foo can be accessed using
get("/@foo") method invocation.

NOTE: Though it is possible to directly instantiate
biz.hammurapi.rules.jsr94.RuleSession this approach is not JSR-94 compliant.

 38

http://www.hammurapi.biz/someruleset.xml
http://wiki.hammurapi.biz/index.php?title=Common_config.DomConfigFactory
http://www.hammurapi.biz/products/common/doc/api/com/pavelvlasov/config/ElementNameDomConfigurableContainer.html
http://wiki.hammurapi.biz/index.php?title=Common_config.DomConfigurableContainer
http://www.hammurapi.biz/products/common/doc/api/com/pavelvlasov/util/Attributable.html

Hammurapi rules User Guide

RuleSession
Hammurapi rules' rule session implements both stateful and stateless session interfaces in
the same class. Stateless' session executeRules() methods are wrappers around stateful
session methods. This class requires the following components be present on the naming bus:

• /handle-manager of type biz.hammurapi.rules.HandleManager.

• /collection-manager of type biz.hammurapi.rules.CollectionManager.

• /rules of type biz.hammurapi.rules.KnowledgeBase KnowledgeBase is a facade for
the Object bus.

• /name and /description of type String.

Optional components:

• /object-filter of type javax.rules.ObjectFilter.

• /knowledge-compactor This entry shall be an implementation of
KnowledgeCompactor. It is used to pre-process object collections before returning them
from RuleSession.getObjects(). Unlike ObjectFilter this interface works on entire
collection of facts and conclusions.

These requirements essentially translate into the following XML structure of the rule set:
<ruleset type="com.pavelvlasov.config.ElementNameDomConfigurableContainer">
 <name>Family ties</name>
 <description>Infers familty relationships from gender and parent/child relationship</description>

 <handle-manager type="class which implements HandleManager"/>

 <collection-manager type="class which implements CollectionManager"/>

 <object-filter type="class which implements object filter"/>

 <rules type="class which implements KnowledgeBase">

 <rule type="...">
 <name>Grandmother</name>
 <description>Infers 'grandmother' relationship from 'mother' and 'child'
relationships.</description>
 ...
 </rule>

 ...
 </rules>
</ruleset>

There can be other components on the naming bus. E.g. one might want to add a thread pool
for multithreaded inference. If rule engine components need to reach application objects
outside of the rule engine container it can be done by injecting those object as container
attributes by passing them in the properties parameter to the createSession() method.

 39

http://www.hammurapi.biz/products/hammurapirules/jsr94/api/javax/rules/StatefulRuleSession.html
http://www.hammurapi.biz/products/hammurapirules/jsr94/api/javax/rules/StatelessRuleSession.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/HandleManager.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/CollectionManager.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/KnowledgeBase.html
http://www.hammurapi.biz/products/hammurapirules/jsr94/api/javax/rules/ObjectFilter.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/KnowledgeCompactor.html

Hammurapi rules User Guide

Methods

This is an excerpt from JavaDoc describing Hammurapi rules' implementation details
regarding rule session. For information about other classes see Hammurapi rules JavaDoc.

executeRules()

This method delegates to KnowledgeBase.executeRules(). Normally rules are executed
automatically when addObject() or updateObject() methods are invoked. Invocation of
this method is required to make sure that all inference threads finished inference process and
the internal object bus queue is empty.

executeRules(List objects)

Calls executeRules(object, null)

executeRules(List objects, ObjectFilter objectFilter)

This method is a wrapper around stateful method. It adds all objects to the session, executes
rules, returns objects and finally resets the session.

Admin

RuleAdministrator

getRuleExecutionSetProvider(Map properties)

Creates new RuleExecutionSetProvider. Properties are ignored.

getLocalRuleExecutionSetProvider(Map properties)

Creates new LocalRuleExecutionSetProvider. Properties are ignored.

registerRuleExecutionSet(String uri, RuleExecutionSet res, Map properties)

Registers a rule execution set.

Rule sets can be registered by value or by reference. When registered by value XML definition
of the rule set is loaded into registrations.xml file. When a rule set is registered by
reference then its URI is stored in the registrations file. To store a rule set by reference
properties argument of registerRuleExecutionSet(String uri,
RuleExecutionSet res, Map properties) shall contain an entry with the key by-
reference and the value Boolean.TRUE. In order to be storable by reference a rule set
must be created by RuleExecutionSetProvider.createRuleExecutionSet(String
uri, Map properties) method. The code fragment below shows how to store a rule set
by reference.
String ruleServiceProviderClassName = "biz.hammurapi.rules.jsr94.FileRuleServiceProvider";
Class.forName(ruleServiceProviderClassName);

 40

http://www.hammurapi.biz/products/hammurapirules/doc/api/index.html
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/KnowledgeBase.html

Hammurapi rules User Guide

RuleServiceProvider serviceProvider =
RuleServiceProviderManager.getRuleServiceProvider(ruleServiceProviderClassName);
RuleAdministrator administrator = serviceProvider.getRuleAdministrator();
RuleExecutionSetProvider resp = administrator.getRuleExecutionSetProvider(null);
RuleExecutionSet res = resp.createRuleExecutionSet("http://www.mysite.com/myrules.xml", null);
Map properties=new HashMap();
properties.put("by-reference", Boolean.TRUE);
administrator.registerRuleExecutionSet("family ties", res, properties);

deregisterRuleExecutionSet(String uri, Map properties)

Removes a rule set with a given uri from the registration file. Properties are ignored.

LocalRuleExecutionSetProvider

properties map passed to createRuleExecutionSet() methods gets XML-ized to the
registration file and then is reinstantiated and injected into the runtime rule set. It allows to
provide registation time parameterization of rule sets. It is recommended to use Java primitive
types or collections/maps from java.util package for map's keys and values. Rule
execution sets created by LocalRuleExecutionSetProvider cannot be registered by
reference.

createRuleExecutionSet(Object holder, Map properties)

holder must be of type org.w3c.Element.

RuleExecutionSet

Only rule execution sets created by
RuleExecutionSetProvider.createRuleExecutionSet(String uri, Map
properties) can be registered by reference. If setDefaultObjectFilter() is invoked
of such a rule execution set or setProperty() is invoked on one of rule set rules before the
invocation of registerRuleExecutionSet() then such a rule execution set cannot be
registered by reference.

RuleExecutionSetProvider

createRuleExecutionSet(String uri, Map properties)

If uri starts with resource: then the rest of the uri is treaded as a resource path in
classloader. Otherwise the uri is treated as URL. Only rule execution sets created by this
method can be registered by reference unless setDefaultObjectFilter() method or
setProperty() methods of one of rule has been invoked before the invocation of
registerRuleExecutionSet().

createRuleExecutionSet(Serializable xmlString, Map properties)

The first parameter must be of type java.lang.String and contain XML defition of a rule
set.

 41

Hammurapi rules User Guide

properties map passed to createRuleExecutionSet() methods gets XML-ized to the
registration file and then is reinstantiated and injected into the runtime rule set. It allows to
provide registation time parameterization of rule sets. It is recommended to use Java primitive
types or collections/maps from java.util package for map's keys and values.

 42

Hammurapi rules User Guide

Methodology
This section outlines steps and roles involve in development and usage of Hammurapi rules
rule sets. Please note that one person can play multiple roles and one role can be played by
multiple people.

Roles
• Object model developer - develops application object model. If the object model is

generated or already exists then this role is not required.

• Application developer - develops application code. This person(s) should know JSR-
94 runtime API and the application object model which is used by rules.

• Rules developer - people in this role develop rules and they should know the
application object model which will be used by rules and Hammurapi rules rule
authoring.

• Rule set assembler - creates rule set XML definitions, provides rule parameters,
adjusts QoS by selecting proper implementations of the engine components. This role
requires knowledge or rule parameters (e.g. from JavaDoc generated from rule classes)
and Hammurapi rules' components.

• Rule administrator - registers rules on local machines and provides registration time
parameters. Names and possible values of supported registration time parameters shall
be supplied by the rule set assembler.

Steps
• Develop application object model. When the object model is ready rule developers can

start working on rules and application developers can work on the application code.
These two activities are independent because the application code is decoupled from
rules by JSR-94 interfaces.

• Rule developers develop rules.

• Rule assemblers assemble rules into rule sets.

• Application developer develop application code.

• Rule sets are registered and parameterized by the rules administrator (or automated
script) as part of the application installation procedure.

 43

Hammurapi rules User Guide

Support of specialized rule languages
Although there are many reasons to use Java as a language for rule authoring (see Occam's
Razor overarching principle), there are situations where it is justified to use a specialized rule
engine. Such situations include:

• Rules use a limited set of domain objects and operations. Rules don't need to access
underlying Java application resources such as making SQL queries or sending JMS
messages. There is (going to be) a lot of rules and therefore benefits of concisness of
specialized rule engine overweight expenses associated with the introduction of the new
rules language into development envirionment.

• You are migrating rules from existing rule engine solution to Hammurapi rules. There
are already people familiar with the specialized rules language and there is a significant
number of rules written in that language. In this case it maybe cheaper/less risky to
develop a language module for Hammurapi rules than to retrain people and rewrite
rules.

A specialized rule engine can be introduced into Hammurapi rules in two ways:

• Rules defined in a specialized language are evaluated at runtime by a subclass of
AbstractRule

• JSP-like approach. Rules defined in a specialized language are compiled to Java
source files, which in turn get compiled to class files.

One rule set can contain rules defined in different languages.

Custom rule example
Code snippets below show how to implement the first approach of introducing a specialized
rules language to Hammurapi rules.
public class MyRule extends AbstractRule {
 private String definition;
 private Collection invocationHandlers;
 private Collection removeHandlers;

 public void setDefinition(String definition) {
 this.definition=definition;
 }

 public Collection getRemoveHandlers() {
 return removeHandlers;
 }

 public Collection getInvocationHandlers() {
 return invocationHandlers;
 }

 public void start() throws ConfigurationException {
 super.start();
 ... Parse/compile definition and create invocation handlers ...
 }
}

 44

http://wiki.hammurapi.biz/index.php?title=Overarching_principles#Stick_with_Java_.28Occam.27s_Razor.29
http://wiki.hammurapi.biz/index.php?title=Overarching_principles#Stick_with_Java_.28Occam.27s_Razor.29
http://www.hammurapi.biz/products/hammurapirules/doc/api/biz/hammurapi/rules/AbstractRule.html

Hammurapi rules User Guide

Rule class.
<rule type="mypackage.MyRule">
 <name>...</name>
 <description>...</description>
 <definition>
 ... Rule definition in a specialized rule language ...
 </definition>
</rule>

Rule XML definition.

Specialized rules language for the tutorial
Here we'll show an example of a specialized rules language which could be used in the
tutorial. Tutorial rules use a small set of classes and operations. It would make sense to create
this specialized language if we planned to develop hundreds or thousands of rules and our rule
developers weren's Java-savvy.

Language constructs

All types in the language belong to a predefined package. Type names start with upper case
leter, variable names start with lower case letter.

Name Defintion Example Remarks

Rule
definition

with context [if
condition] then
conclusions.

with Child childOne and
Child childTwo if object
of childOne equals to
object of childTwo then
childOne is Sibling of
childTwo and childTwo is
Sibling of childOne

Context

variable
definition [and
variable
definition]*

Child child and Parent
parent

Variable
definition <Type> <name> Child child

Condition and, or, equals
[to], is

object of childOne
equals to object of
childTwo

equals [to] is equivalent of Java
equals(), is is equivalent to Java
instanceof

Conclusions conclusion [and
conclusion]*

childOne is Sibling of
childTwo and childTwo is
Sibling of childOne

Conclusion <person 1> is subject of childOne is This construct is equivalent to Java

 45

Hammurapi rules User Guide

<Relationship
type> of <person
2>

Sibling of subject of
childTwo

new <Relationship type>(<person
1>, <person 2>)

Member
access

<member> of
<instance> subject of childOne

Conclusion can be implicitly
converted to its subject for new
conclusion construction. childTwo
is Sibling of childOne is
the same as subject of
childTwo is Sibling of
subject of childOne

Example

Compare a ternary Cousin rule defined in Java and the specialized language
public void infer(Child child1, Child child2, Sibling sibling) {
 if (child1.getObject().equals(sibling.getSubject()) &&
child2.getObject().equals(sibling.getObject())) {
 post(new Cousin(child1.getSubject(), child2.getSubject()));
 }
}
with
 Child child1 and Child child2 and Sibling sibling
if
 object of child1 equals to subject of sibling and object of child2 equals to object of sibling
then
 child1 is Cousin of child2

Implementation notes

If you decide to implement a parser for this language keep in mind that the language grammar
is not context-free. Context, condition, and conclusions clauses' grammars are different. In
case of ANTLR you'd need one lexer, three parsers and a multiplexor to switch parsers on
with, if and then.

If you successfullty implement the parser and decide to share it with the rest of the world we'll
gladly host it on our web site or provide a link from our web site to the implementation.

Rete algorithm
Rete algorithm is an efficient pattern matching algorithm for implementing rule-based ("expert")
systems. The Rete algorithm was designed by Dr. Charles L. Forgy of Carnegie Mellon
University in 1979. Rete has become the basis for many popular expert systems.

This section describes Hammurapi rules in terms of the Rete algorithm.

This section is based on the description of the Rete algorithm in Charles Forgy's article "Rete:
A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem" published in the
Artificial Intelligence magazine in 1982, pp 17-37. This article is referenced in the text as
[RETE].

 46

http://en.wikipedia.org/wiki/Rete_algorithm

Hammurapi rules User Guide

As an example we will use a rule engine which comes to dinner ideas based on items in a
grocery store. The engine will contain the following three rules:

• If food is fish and wine is white and wine age is above 2 years then it is a dinner idea.

• If food is meat and wine is red and wine age is above 3 years then it is a dinner idea.

• If food is meat and wine is merlot and wine age is above 2 years then it is a dinner idea.

We'll build a Rete network for each of rules and describe how the network is "physically"
implemented in Hammurapi rules Java constructs. Then we'll build a combined network for all
three rules and explore its physical implementation.

Disclaimer: The rules were created for demonstration purposes only and do not constitute any
culinary advice.

Figure 8 depicts inference network for a dinner with fish
and white wine. Input objects are passed to the root node,
which discriminates food and wine. There are five intra-
nodes Food, Fish, Wine, WhiteWine, Age > 2 years,
and one inter-node Dinner, which is also a terminal node.

The original Rete
description has no
notion of
inheritance. Each
object has a type
and the root node is
an object type
discriminator. In
Java we have a
luxury of inheritance
and Hammurapi
rules takes
advantage of it as
will be shown below.
Figures 9 and 10
show wine and food
class hierarchies
which will be used in
the example. Our
conclusion class is
Dinner. It is shown on Figure 11.

Figure 8. Inference network for a
dinner with fish and white wine

Figure 9. Wine class hierarchy

 47

http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_Rete_FishDinner.gif
http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_Rete_Wine.gif

Hammurapi rules User Guide

Figure 11. Dinner class Figure 10. Food class hierarchy

 48

http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_Rete_Food.gif
http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_Rete_Dinner.gif

Hammurapi rules User Guide

Figure 12. Mapping of fish dinner inference network to Java constructs
Figure 12 shows mapping of the logical inference network shown on Figure 8 to "physical"
implementation in Hammurapi rules. The first thing to note is that Hammurapi rules takes
care of nodes Food, Fish, Wine, and WhiteWine by using Java type system and method
signatures. Implementation of nodes Age > 2 years and Dinner is shown below.
/**
* Age > 2 years node
*/
public boolean accept(WhiteWine wine, AcceptInfo acceptInfo) {
 return wine.age > 2;
}

/**
* Dinner node
*/
public Dinner(Fish fish, WhiteWine whiteWine) {
 return new Dinner(fish, whiteWine);
}

 49

http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_Rete_DinnerPhysical.gif

Hammurapi rules User Guide

Figure 14. Inference network for a dinner
with meat and red wine

Figure 13. Inference network for a dinner with
meat and red wine

Figures 13 and 14 show inference networks for the two remaining rules

 50

http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_Rete_MeatDinner.gif
http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_Rete_MerlotDinner.gif

Hammurapi rules User Guide

Figure 15. Combined inference network
and Figure 15 shows the combined network for all three rules. Meat and Age > 2 y are
shared nodes. As you can see, we swapped Age > 2 y with preceding nodes to make Age
> 2 y a shared node. We did it assuming that computational cost of determining wine age is
about the same as the cost of determining wine type, and, therefore, we can leverage
commutativeness of the and operation in order to create a shared node. In Java it is often not
true. Also and and or operations are commutative in logic, but "not exactly" in Java. For
example, in Java the right operand of && expression is not evaluated if the left operand
evaluates to false. As such swapping operands can lead to performance degradation or to
an exception.

 51

http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_Rete_DinnerIdeas.gif

Hammurapi rules User Guide

Figure 16. Mapping of combined inference network to Java constructs
Figure 16 shows mapping of the combined infernce network to implementation in Hammurapi
rules. Dashed nodes don't need any implementation, Hammurapi rules takes care of these
nodes by dispatching input objects only to accept() and infer() methods with compatible
parameters.

Because we have a shared node Age > 2 years, we need a class to
represent output from this node. This class is shown on figure 17.

WineOlderThanTwoYears class implements Fact interface and its
isPrivate() method returns true. This tells Hammurapi rules that
instances of this class shall be internal to the engine. I.e. they shall not
be added to the handle manager and made available to engine's clients.
Here is the implementation of Age > 2 years node (#1)
public WineOlderThanTwoYears infer(Wine wine) {
 return wine.age > 2 ? new WineOlderThanTwoYears(wine) : null;
}

In many problem domains number of shared condition (internal
conclusion) classes will grow as number of rules grows. Therefore,
manual discovery and implementation of shared condition classes may

Figure 17. Private
conclusion class

 52

http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_Rete_DinnerIdeasPhysical.gif
http://wiki.hammurapi.biz/index.php?title=Image:HammurapiRules_Rete_WineOlderThanTwoYears.gif

Hammurapi rules User Guide

become cumbersome. If you reach this point it is an indicator that it is time to switch to a
specialized, domain-specific, rules language. The language compiler shall automatically
discover shared conditions and generate classes for them. Generation can be done either at
build time, startup time or runtime. Bytecode generation article describes how to generate Java
bytecode and inject it into JVM at runtime.
You will still be able to use existing rules written in Java after you switch to a specialized rules
language. You will also be able to combine rules written in different languages. This feature
allows to start development of rules in Java leveraging organization's existing Java skill pool.
Initial implementation of rules will allow to better understand the problem domain and come up
with an effective grammar and implementation for a specialized language if there is a need in
such a language.

Implementation of nodes 2 - 7 is shown below.
/**
* Node # 2
*/
public boolean accept(WineOlderThanTwoYears wotty, AcceptInfo acceptInfo) {
 return wotty.wine instanceof WhiteWine;
}

/**
* Node # 5
*/
public Dinner(Fish fish, WineOlderThanTwoYears wotty) {
 return new Dinner(fish, wotty.wine);
}

/**
* Node # 3
*/
public boolean accept(WineOlderThanTwoYears wotty, AcceptInfo acceptInfo) {
 return wotty.wine instanceof Merlot;
}

/**
* Node # 6
*/
public Dinner(Meat meat, WineOlderThanTwoYears wotty) {
 return new Dinner(fish, wotty.wine);
}

/**
* Node # 4
*/
public boolean accept(RedWine wine, AcceptInfo acceptInfo) {
 return wine.age > 3;
}

/**
* Node # 7
*/
public Dinner(Meat meat, RedWine redWine) {
 return new Dinner(meat, redWine);
}

 53

http://www.hammurapi.biz/products/sqlc/doc/BytecodeGeneration.pdf

Hammurapi rules User Guide

Negations and retractions
In the Rete algorithm when an object is retracted (removed) from the working memory, it
traverses the network as a "minus" token (see Section 2.2.4 in [RETE]) and when it matches a
pattern instantiation is removed from the conflict set instead of being added as in the case of
"plus" token. Object modification is handles are removal and addition of the object from/to the
working memory. The problem with this approach is that it stipulates immutability of the object
(see Section 6 in [RETE]). In other words when we change an object (say change wine age
from 4 to 1) then the object will not match patterns it matched before and will not be properly
removed from the conflict set. Taking into account that in Java conditions can involve not only
object's attributes but also related objects (e.g. Account condition may use account
transactions), implementation of retraction as described in [RETE] would require the whole
object model be immutable.

Hammurapi rules uses negators to retract objects from conflict sets and working memory.
Conclusion instances are linked to the input objects they were inferred from. When an object is
removed from the working memory it doesn't have to match patterns again (because it might
not match any or match wrong ones because object state was changed).

There is one more method to handle retractions - action tracing. It is similar to "Undo"
functionality in text editors - on each infer() method invocation Hammurapi rules records
remove and post actions resulted from the method and builds a map Object -> Actions. When
the object is removed from the working memory, undo() methods of associated actions are
invoked.

Summary
• The way how Hammurapi rules leverages Java type sytem obviates impelmentation of

a good deal of logical nodes.

• Shared and terminal intra-object nodes are implemented by single-argument infer()
methods.

• Intra-object nodes which are inputs to inter-object nodes are implemented as accept()
methods.

• Inter-object nodes are implemented as multi-parameter infer() methods.

• Linear network fragments can be collapsed during implementation into one node (i.e.
infer() or accept() method). See Section 3.2.2 in [RETE].

• Rete algorithm poses a number of constraints on the object model (see Sections 1, 3.1,
and 6 in [RETE]). These constraints are difficult to satisfy in real-life object models.
Hammurapi rules poses no constraints on the object model.

• Assertion part of Hammurapi rules is exact implementation of Rete algorithm, but
retraction part is not in order to remove immutability of the object model requirement.

• Hangle manager corresponds to the working memory.
• Collection manager corresponds to the conflict set.

 54

Hammurapi rules User Guide

• post() method corresponds to MAKE action.

• update() method corresponds to MODIFY action.

• remove() method corresponds to REMOVE action.

 55

Hammurapi rules User Guide

Backward chaining
So far we talked about forward chaining, a.k.a. forward reasoning. Starting from version 3.x
Hammurapi Rules supports backward chaining, a.k.a. backward reasoning.
Forward chaining starts with a set of source facts and produces conclusions using rules a rule
set. Backward chainng starts with a set of conclusion types it needs and then works backwards
to find rules and facts to produce conclusions of required type.

Example
Hammurapi Rules tutorial shows how to construct family tree from two source fact types –
Child(Person, Person) and Spouse(Person, Person). The rule set has 25 rules and
27 conclusion types. The forward chaining part of the tutorial takes input of 17 source facts (3
spouses, 14 children) and infers 98 family relationships.

What if all we needed was GrandMother relationships (6 out of 98)? In this case we would
have wasted a lot of computing resources by

• Inferring 92 conclusions only to discard them.

• Firing 23 rules a number of times unnecessarily, as only two rules are needed to infer
GrandMother relationship – ParentRules.infer(Child) and
GrandRules.infer(Child, Mother).

• Adding Spouse to input, as it is not used in GrandMother inference.

In this situation backward chaining is much more effective. It works in the following way:

• Client code requests conclusions of type GrandMother from a rule session.

• The rule session finds rules and facts sources attached to the session which produce
facts of requested type. In our case it is GrandRules.infer(Child, Mother)

• Then the rules session finds fact source and rules which produce Child and Mother.

• There is a facts source which produces Child and there is Parent rule which infers
Mother from Child input.

• As a result, the backward chaining rule session builds an inference chain to infer only
GrandMother conclusions as shown on the picture below.

 56

Hammurapi rules User Guide

Figure 2 Backward chaining.

Implementation
There is no standard Java API for backward chaining rules engines at the moment. Therefore,
Hammurapi rules employs a simple proprietary API.

Backward chaining classes reside in biz.hammurapi.rules.backwardreasoning
package. Backward chaining leverages forward chaining and dispatching classes. There are
only three classes in the backward reasoning package.
The same rules and rulesets can be used for forward and backward chaining. If rules use
post() method, then they might need to invoke setMethodFactTypes() method from
constructor. Below is JavaDoc for the method.

Rule methods can return facts and post facts. Backward reasoning engine needs to know types of rule outputs.
From rule class introspection the rule system knows about rule method return type, but it doesn't know about
types posted through post(). Also, return type might not be enough, as returned instances may implement
interfaces which other rules are interested in, but which are not declared in the rule return type. This method
allows rules to inform the inference system about posted types.

This method shall be invoked before rule is started. Place invocations of this method in rule constructors.

Only rules used in backward reasoning need/must call this method to ensure proper reasoning. For methods
without fact types information set through this method, the rule system uses method return type.

Ruleset definition XML file format is identical to the <rules> element in forward chaining rule
set definition. The only difference is the type attribute of the root element. See familyties-
backwardreasoning.xml ruleset definition file in Hammurapi Rules Tutorial for more
details.
If Backward reasoning rules container is configured to use a thread pool (worker), then it
performs inference in multiple threads. It allows to produce conclusions time efficiently in
situations where facts source are slow. E.g. facts source may be a database query, Web
service, ESB service, or remote file on a network. Rules session may use multiple such

 57

Hammurapi rules User Guide

sources. Reading source facts from them sequentially will result in much slower reasoning as
opposed to doing it in parallel.

Backward reasoning rules container implements FactSource interface and returns
Iterator. The container performs inference immediately as new facts are read from input
fact sources. If reasoning is performed faster than new facts are read from sources, the output
iterator blocks waiting for additional facts. It unblocks when new conclusion is available or
when all input sources are exhausted. In the latter case it returns null if there is no new
conclusion. Client code shall check value returned by it.next() for nullability and discard null
values.
If a rule in a ruleset produces multiple conclusion types and current query needs only one of
them (e.g. Parent rule infers Mother and Father), other types are accumulated in the rule
session.
Multiple queries for different conclusion types can be run against the same rule session. Rules
are not executed repeatedly for every query. For every subsequent query only rules in the
inference chain which haven’t been executed yet are invoked. For example, if after inferring
GrandMother we decided to run a query for GrandFather, then the Parent rule wouldn’t
be executed during the second query, because it would have inferred Father conclusions
during the first run. Needless to say, if the same query is run twice, no inference takes place
during the second run – client code receives accumulated results immediately.
The reasoning engine features infinite reasoning loop detection and means to avoid
processing of duplicate facts/conclusions.

Interactive Rules Parameterization
One interesting aspect of using a backward chaining rules engine is implementation of
complex wizards, e.g. mortgage or insurance policy application. In such a wizard a user
iteraction call-back interface is provided to rules so they can ask user for information they
need. In this case user is asked only information which is really needed to come to required
conclusion.
In the case of forward-chaining decisioning, user might be asked to provide information which
is not used in decisioning process. On the other hand, some required information might be
omitted and decisioning will either fail or will yield incorrect results.

Applicability
Forward chaining is applicable when most of output conclusions are going to be used by the
application. For example, if a rule session is used for validation of web page inputs, then all
validation errors inferred by the session are used by the application.
Backward chaining is applicable when

• There are many fact sources,

• There are many facts in the sources, e.g. millions of records in a database.

 58

Hammurapi rules User Guide

• Retrieval of such facts is costly computationally (long-running database queries or
mainframe transactions) or monetarily (e.g. in SOA there might be a charge associated
with invocation of a particular service).

• There are many conclusion types, but only few of them used for each particular query.

 59

Hammurapi rules User Guide

Data flow package
Classes in the data flow package (biz.hammurapi.dataflow) are intended for building
multi-threaded process execution engines, e.g. workflow processors.
These classes will be used in the future products of Hammurapi Group.
They are placed in Hammurapi Rules because of their conceptual affinity to dispatchin and
inference classes of Hammurapi Rules.

 60

Hammurapi rules User Guide

Appendix 1 Engagement model
Error! Not a valid filename.

 61

Hammurapi rules User Guide

Appendix 2 GNU Free Documentation License
Version 1.2, November 2002
 Copyright (C) 2000,2001,2002 Free Software Foundation, Inc.
 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document "free" in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction or
reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work
under the conditions stated herein. The "Document", below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as "you". You accept the license if
you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document's overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

 63

Hammurapi rules User Guide

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising the
document straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable for
input to text formatters or for automatic translation to a variety of formats suitable for input to
text formatters. A copy made in an otherwise Transparent file format whose markup, or
absence of markup, has been arranged to thwart or discourage subsequent modification by
readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification.
Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-
generated HTML, PostScript or PDF produced by some word processors for output purposes
only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For
works in formats which do not have any title page as such, "Title Page" means the text near
the most prominent appearance of the work's title, preceding the beginning of the body of the
text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another
language. (Here XYZ stands for a specific section name mentioned below, such as
"Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve the Title" of
such a section when you modify the Document means that it remains a section "Entitled XYZ"
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

 64

Hammurapi rules User Guide

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license notice
saying this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures to
obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document's license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible. You
may add other material on the covers in addition. Copying with changes limited to the covers,
as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus accessible at the stated
location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution

 65

Hammurapi rules User Guide

and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of the
principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

• F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document's license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given on
the Title Page. If there is no section Entitled "History" in the Document, create one
stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the "History"
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

• K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of
the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in
their titles. Section numbers or the equivalent are not considered part of the section
titles.

 66

Hammurapi rules User Guide

• M. Delete any section Entitled "Endorsements". Such a section may not be included in
the Modified Version.

• N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title
with any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to the list
of Invariant Sections in the Modified Version's license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of peer
review or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the
same name but different contents, make the title of each such section unique by adding at the
end of it, in parentheses, the name of the original author or publisher of that section if known,
or else a unique number. Make the same adjustment to the section titles in the list of Invariant
Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original
documents, forming one section Entitled "History"; likewise combine any sections Entitled
"Acknowledgements", and any sections Entitled "Dedications". You must delete all sections
Entitled "Endorsements."

 67

Hammurapi rules User Guide

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
"aggregate" if the copyright resulting from the compilation is not used to limit the legal rights of
the compilation's users beyond what the individual works permit. When the Document is
included in an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document's Cover Texts may
be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant Sections. You may
include a translation of this License, and all the license notices in the Document, and any
Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

 68

Hammurapi rules User Guide

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License "or any later version" applies to it,
you have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

 69

Hammurapi rules User Guide

References
1. Hammurapi Rules home page - http://www.hammurapi.biz/hammurapi-

biz/ef/xmenu/hammurapi-group/products/hammurapi-rules/index.html

2. Hammurapi Rules JavaDoc - http://www.hammurapi.biz/hammurapi-
biz/doc/products/hammurapi-rules/api/index.html

3. JSR-94 Specification - http://www.hammurapi.biz/hammurapi-
biz/system/FileActions/get/81/jsr94_spec.pdf

4. JSR-94 API - http://www.hammurapi.biz/hammurapi-biz/doc/products/hammurapi-
rules/jsr94/api/index.html

5. JSR-94 Home page - http://www.jcp.org/en/jsr/detail?id=94

6. Getting started with Java Rule Engine API -
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html

7. The Java Business Rules Community - http://www.javarules.org/

8. Open source rule engines written in Java -
http://www.manageability.org/blog/stuff/rule_engines/view

 71

http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-group/products/hammurapi-rules/index.html
http://www.hammurapi.biz/hammurapi-biz/ef/xmenu/hammurapi-group/products/hammurapi-rules/index.html
http://www.hammurapi.biz/hammurapi-biz/doc/products/hammurapi-rules/api/index.html
http://www.hammurapi.biz/hammurapi-biz/doc/products/hammurapi-rules/api/index.html
http://www.hammurapi.biz/hammurapi-biz/system/FileActions/get/81/jsr94_spec.pdf
http://www.hammurapi.biz/hammurapi-biz/system/FileActions/get/81/jsr94_spec.pdf
http://www.hammurapi.biz/hammurapi-biz/doc/products/hammurapi-rules/jsr94/api/index.html
http://www.hammurapi.biz/hammurapi-biz/doc/products/hammurapi-rules/jsr94/api/index.html
http://www.jcp.org/en/jsr/detail?id=94
http://www.jcp.org/en/jsr/detail?id=94
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html
http://www.javarules.org/
http://www.javarules.org/
http://www.manageability.org/blog/stuff/rule_engines/view
http://www.manageability.org/blog/stuff/rule_engines/view

	Introduction
	Feature highlights
	Installation
	Quick start guide
	Terminology
	Using rule engine in a Java program
	Writing rules
	Negation
	Updating and removing facts
	Parameterization

	Creating a rule set
	Registering a rule set
	With the command line utility
	Programmatically

	Troubleshooting
	Persisting knowledge base
	Distributed inference

	 Architecture
	Administrative interface
	Registrations file XML format
	Rule set XML format
	Runtime components
	Object bus internals
	Invocation handlers
	Dispatching
	Multi-parameter infer() methods and collection manager

	New invocation semantics
	Autodetection of updates
	Notes

	Lifecycle of rule engine components

	 Tutorial
	Installation
	Looking inside
	Running tutorial
	Direct loading of the rule set
	Registering the rule set
	List registered rule sets

	TO-DO
	Validator
	Validator vs. negators

	 Administrative command line utility
	register
	deregister
	list
	dump

	 JSR-94 implementation notes
	Technology compatibility kit
	Rule Service Provider
	RuleRuntime
	createRuleSession(String uri, Map properties, int type)

	RuleSession
	Methods
	executeRules()
	executeRules(List objects)
	executeRules(List objects, ObjectFilter objectFilter)

	Admin
	RuleAdministrator
	getRuleExecutionSetProvider(Map properties)
	getLocalRuleExecutionSetProvider(Map properties)
	registerRuleExecutionSet(String uri, RuleExecutionSet res, Map properties)
	deregisterRuleExecutionSet(String uri, Map properties)

	LocalRuleExecutionSetProvider
	createRuleExecutionSet(Object holder, Map properties)

	RuleExecutionSet
	RuleExecutionSetProvider
	createRuleExecutionSet(String uri, Map properties)
	createRuleExecutionSet(Serializable xmlString, Map properties)

	 Methodology
	Roles
	Steps

	 Support of specialized rule languages
	Custom rule example
	Specialized rules language for the tutorial
	Language constructs
	Example
	Implementation notes

	Rete algorithm
	Negations and retractions
	Summary

	 Backward chaining
	Example
	Implementation
	Interactive Rules Parameterization
	Applicability

	 Data flow package
	Appendix 1 Engagement model
	Appendix 2 GNU Free Documentation License
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

