
Hammurapi User Manual

Copyrights reserved 1
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

How To
Hammurapi

Version Log:

Date Versi
on

Status Author Remarks
26-July-04 1.0 Release

candidate
Pavel Covers version 3.0

18-July-04 0.9 Draft Pavel Reflects changes in
InspectorContext and
Waiver API's

05-July-04 0.8 Draft Pavel Filtering, detailed
description of
inspectors.xml

17-June-04 0.7 Draft Pavel Chapter 5 describes new
command-line interface.
Chapter 6 modified.

11-June-04 0.6 Draft Pavel Chapter 17
25-May 04 0.5 Draft Pavel Chapters 14, 16
25-May 04 0.4 Draft Johannes Amits Remarks & add.

Chapter 11,13,15
17-May-
04

0.3 Draft Pavel Added chapters 8,9,10
12-May 04 0.2 Draft Johanne

s
Added main() chapter

8-May 04 0.1 Draft Janos

Hammurapi User Manual

Copyrights reserved 2
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

Table Of Content
1 Introduction... 3
2 System requirements... 3
3 Concepts.. 3
4 Installation... 4

4.1.1 Downloading Hammurapi distribution ... 4
5 Running Hammurapi from command line .. 4

5.1 Options.. 5
6 Hammurapi in Eclipse via Main ... 6
7 Hammurapi in Eclipse as an Ant target .. 8

7.1 Configuring a Hammurapi Ant task.. 8
7.1.1 The ant build.xml file.. 8
7.1.2 Memory usage... 9

7.2 Basic configuration of Eclipse .. 9
7.3 Running Ant inside Eclipse .. 9
7.4 Running Ant as a normal Java Application .. 10

8 Development process with Hammurapi.. 13
9 Waivers ... 14

9.1 Defining a waiver.. 14
9.2 Format of <waiver> element... 15
9.3 Scenarios ... 16

10 Auto waivers ... 16
11 Filtering... 17

11.1 LanguageElementFilter... 18
12 Hammurapi Inspector Configuration .. 19
13 Hammurapi Testing .. 21
14 Understanding InspectorContext .. 21
15 Writing your own Inspectors .. 22
16 Writing annotations... 23
17 How it works, tips for plugin developers.. 24

17.1 HammurapiTask.execute().. 25
17.2 Plugin developer recommendations.. 27

18 Customizing reports style ... 27
19 Incremental reviews .. 28

19.1 Comply-on-touch .. 28
20 Sample code .. 28
21 Instantiation and configuration of objects with DomConfigFactory 28

Hammurapi User Manual

Copyrights reserved 3
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

1 Introduction
Hammurapi is a code review tool. It scans Java source files and inspects them to
adherence with coding standards. Hammurapi produces reports in HTML or XML. It can
be executed either as standalone application or as Ant task.

2 System requirements
Hammurapi requires Java 1.3.x or Java 1.4.x. By default lib directory contains jar files
for Java 1.4. If you intend to run Hammurapi on Java 1.3 then replace lib/pvcommons-
…-1.4.jar with lib/pvcommons-…-1.3.jar in Hammurapi classpath.
Hammurapi can review Java 1.4 or earlier sources. Java 1.4 grammar is incompatible
with Java 1.3 grammar because assert is a reserved word in Java 1.4. So if you have to
review Java 1.3 sources which contain methods assert(…) you need to replace lib/Jsel-
…-1.4.jar with lib-1.3/Jsel-…-1.3.jar in Hammurapi classpath.

3 Concepts
Hammurapi works with a Repository of java files. Repository is a file, directory or a
group of files/directories. Hammurapi parses files in Repository and then navigates
Inspectors through the parsed files.
Inspector is a java class, which inspects a piece of java source code. Inspectors report
their findings to Hammurapi by creating Violations, issuing Warnings, creating
Annotations, or gathering Metrics.
Hammurapi accumulates Inspector’s findings and creates a report. It is possible to
provide Waivers to Hammurapi to waive some particular Violations or all Violations
found by particular Inspector.
Inspectors and Violations generated by them have Severity, which is a positive number.
Severity 1 is considered the highest severity. Severity 5 and after are considered as
information messages and excluded from Sigma and DPMO calculations.
Inspectors are configured using Inspector descriptors, which are grouped into
Inspector sets. Inspector sets can be loaded from files or URL’s. Multiple Inspector
sets can be loaded for one review. Inspectors can be incrementally configured by
multiple Inspector descriptors with the same name. For example one Inspector
descriptor can set Inspector class name and severity, another, loaded after the first one
can override severity and also provide description.
Inspector sets support inheritance – one Inspector set can be based on another one. In
this way you can have base Inspector set and specialized Inspector sets for different
application types. E.g. one Inspector set for EJB Applications and another Inspector set
for Swing applications.
Waivers are grouped in Waiver Sets, which can be loaded from files and URL’s.
Multiple Waiver Sets can be loaded for one review.
Waiver can be applied to one instance of Violation or to all Violations reported by a
particular Inspector. Waiver can have an expiration date. One Inspector can waive
Violations reported by another Inspector. E.g. you have an general policy that
prohibiting hiding inherited instance variables. There is an Inspector checking adherence
to this policy. At the same time you have another policy that every class shall have its
own logger with predefined name logger. And you have an Inspector checking for this.
This policy conflicts with “Prohibit hiding inherited instance variables” policy. It is

Hammurapi User Manual

Copyrights reserved 4
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

possible to configure the second Inspector to waive violation reported by the first
Inspector.
Review results are reported to Listeners. Hammurapi comes with an Output Listener
which generates reports in HTML or XML. You can write your own listeners which can
provide custom reporting. You can also turn this Listener off if you don’t like the default
reporting functionality.
If you run Hammurapi as part of build process you can prevent low quality code to be
deployed by specifying code quality thresholds. Hammurapi will fail build if source code
does not meet specified standards.

4 Installation
For running Hammurapi you need Hammurapi distribution. If you plan to run
Hammurapi as Ant task then you need to install Ant as well.
It is possible to run Hammurapi as a standalone Java application, but it is much more
configurable as an Ant task.
Ant can be downloaded from the website http://ant.apache.org.
4.1.1 Downloading Hammurapi distribution
Hammurapi can be downloaded from the website www.hammurapi.org. There are binary
and source distributions The binary distribution contains all the jars required to run
Hammurapi.

5 Running Hammurapi from command line
Hammurapi can be launched from the command line using either hammurapi script on
Linux/Unix or hammurapi.bat batch file on Windows. You might want to set
HAMMURAPI_HOME environment variable before you run Hammurapi, though it is
not required. It is also recommended to add $HAMMURAPI_HOME/bin to path to be
able invoke Hammurapi from any directory.
Some inspectors require particular classes in Hammurapi classpath. For example EJB
inspectors need SessionBean interface in classpath. To avoid adding j2ee.jar, log4.jar and
struts.jar to Hammurapi classpath every time you run review you can add
“-c <path to j2ee.jar>:<path to log4j.jar>:<path to struts.jar>” to HAMMURAPI_ARGS
environment variable.
If you run hammurapi without arguments of with –h option it will output usage summary:
usage: Usage: hammurapi [options] <output dir> <source files/dirs>
-D <local database> Database name
-R <database server> Database server name
-S <severityThreshold> Severity threshold
-T <title> Report title
-U <waivers url> Waivers URL
-W <waivers file> Waivers File
-c <classpath> ClassPath
-d <dpmoThreshold> DPMO Threshold
-e Do not load embedded inspectors
-g Debug
-h Print this message
-i <inspectorsFile> Inspectors file
-j <user name> Database user
-l <class name> Review listener

http://www.hammurapi.org/

Hammurapi User Manual

Copyrights reserved 5
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

-o Suppress output
-p <password> Database password
-r Wrap Jsel model
-s <sigmaThreshold> Sigma threshold
-t <debug type> Jsel type to debug
-u <inspectorsURL> Inspectors URL
-v Verbose
-w <waiverStubs> Where to output waiver stubs
-x Output XML

5.1 Options
• D – Local database name. E.g. C:\MyProject\HammurapiDB
• R – Database server name. E.g. localhost.
• S – Severity threshold. Integer number. If review contains violations with severity

equal or less than the threshold then Hammurapi exit code will be 2.
• T – Report title. E.g. MyProject
• U – Waivers URL. URL where to read waivers from. Can be specified zero, one

or more times and mixed with –W.
• W – Waivers file. File where to read waivers from. Can be specified zero, one or

more times and mixed with –U.
• c – Classpath. Can be specified more than once.
• d – DPMO threshold. Integer number. If review DPMO is higher than the

threshold then Hammurapi will return 2.
• e – Do not load embedded inspectors. Use this option if you use custom

inspectors.xml.
• g – Sets logging level to DEBUG.
• h – Prints help message and exits.
• i – File to load inspectors from. Can be specified multiple times and combined

with –u.
• j – User name for database server.
• l – Review listener class name. The class must implement

org.hammurapi.Listener and have public no argument constructor. Can be
specified more than once.

• o – Suppress output. If you provide this option than no output will be generated.
This option is useful in combination with –l option.

• p – Database password (for server).
• r – Wrap Jsel model. Use this if you have big source bases and inspectors, which

keep references to Jsel model elements. Rule of thumb – try to use it if you get
OutOfMemoryError.

• s – Sigma threshold. Double number. If review sigma is below than the threshold
then Hammurapi exit code will be 2.

• t – Debug type. Class name of Jsel type to debug. E.g.
com.pavelvlasov.jsel.VariableDefinition. Hammurapi will output detailed
information about inspectors inspecting VariableDefinition.

• u – URL to load inspectors from. Can be specified multiple times and combined
with –i.

Hammurapi User Manual

Copyrights reserved 6
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

• v – Sets logging level to VERBOSE.
• w – File to output waiver stubs to.
• x – Tell Hammurapi to output report in XML format.

6 Hammurapi in Eclipse via Main
You can start Hammurapi from Eclipse by creating a Run/Debug configuration for
org.hammurapi.HammurapiTask.main() method and providing argument as described in
the previous section.
Add a new Java App in the Eclipse Launcher.

Figure 1
It is recommended to specify the Heap size with the VM parameters e.g.

-Xms256m –Xmx512m
on a 1GB box. You can play around with this parameters, but its recommended not to
exceed the physical memory and also let he OS a small portion.

Hammurapi User Manual

Copyrights reserved 7
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

If you want to review an existing Eclipse project and don’t want to mess with –c option
then you need to make that project visible to Hammurapi. Just open the Properties on
your Hammrapi project and mark this project, which shall be reviewed.
If you miss this step, Hammurapi may give you tons of “Class not Found Warnings”.

Figure 2
Please set the Project Home Directory to your Hammurapi Installation or to you project
source code directory.

Hammurapi User Manual

Copyrights reserved 8
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

7 Hammurapi in Eclipse as an Ant target
7.1 Configuring a Hammurapi Ant task
Hammurapi Ant configuration is appreciated if you want to do a code review as part of
your build process. This is a great advantage compared to GUI centred code review tools
and fulfill the need of companies with an automated build & deployment process.
Furthermore, the memory footprint of Eclipse can have a negative impact on your code
review on a box with small memory.
7.1.1 The ant build.xml file
This is an example, where I’ve downloaded the source binary of Hammurapi. The
build.xml doesn’t contain any hard coded folder. Everything is configured in the
file build.properties.
With this configuration it is easy to change the inspected project very fast. I have
a separate build.properties file for every inspected project. To change the
inspected project the following items have to be modified:

• ${hammurapi.inspect.project.src}
• ${hammurapi.inspect.project.bin}
• {hammurapi.inspect.project.lib}

<project name="jTtaste1" basedir="." default="test">

<property file="build.properties"/>

<taskdef

name="hammurapi"
classname="org.hammurapi.HammurapiTask"

>
<!-- class path wich for running Hammurapi -->
<classpath>

<!-- The jars are in this folder which are necessary to run Hammurapi -->
<fileset dir="${hammurapi.lib}" includes="*.jar"/>
<!-- jars which are necessary for the built in rules -->
<fileset dir="${hammurapi.extra.lib}" includes="*.jar"/>
<!-- jars which are necessary for the inspected project -->
<fileset dir="${hammurapi.inspect.project.lib}" includes="*.jar"/>
<!-- zip files (classes12.zip of Oracle) which are necessary for the inspected

project -->
<fileset dir="${hammurapi.inspect.project.lib}" includes="*.zip"/>

</classpath>
</taskdef>

<target name="test">

<hammurapi>
<!-- The source folder of the inspected project -->
<src dir="${hammurapi.inspect.project.src}"/>
<classpath>

<!-- jars which are necessary for the built in rules -->
<fileset dir="${hammurapi.extra.lib}" includes="*.jar"/>
<!-- The folder which contains the compiled classes of the inspected project -->
<path location="${hammurapi.inspect.project.bin}"/>
<!-- jars which are necessary for the inspected project -->
<fileset dir="${hammurapi.inspect.project.lib}" includes="*.jar"/>
<!-- zip files (classes12.zip of Oracle) which are necessary for the inspected

project -->
<fileset dir="${hammurapi.inspect.project.lib}" includes="*.zip"/>

</classpath>
<!-- The output folder where Hammurapi saves the inspection result -->
<output dir="${hammurapi.inspect.project.review}"/>

</hammurapi>

Hammurapi User Manual

Copyrights reserved 9
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

</target>
</project>

Important items are:

• The folder ${hammurapi.extra.lib}" conatins the jars, which are necessary
to use the built in rules. There are rules for javax.ejb.EnterpriseBean’s
and so on… These classes are not part of Hammurapi, but are
mandatory for using the built in rules.

• The folder ${hammurapi.inspect.project.lib}" contains the jar files, which
are mandatory for inspecting the target project. It is dependent of that
project, so cannot be part of Hammurapi.

More possible Ant configurations can be read at the website
www.hammurapi.org.
Hammurapi has been tested with Ant 1.5.2, but I was able to use it with the latest
version of Ant.
7.1.2 Memory usage
It is recommended to set a high memory usage for the JRE, which runs Ant and
as an Ant task Hammurapi. The easiest way to do it is the setting in the file
ant.bat, which can be found in the bin folder of the Ant distribution.

7.2 Basic configuration of Eclipse
I’m using Eclipse 2.1.2 with the Ant plug-in for Ant 1.5.3.

7.3 Running Ant inside Eclipse
After right clicking on the item build.xml in the View Package Explorer, the next popup
appears.

http://www.hammurapi.org/

Hammurapi User Manual

Copyrights reserved 10
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

Figure 3
Selecting Run Ant…, Eclipse shows the External Tools launch dialog. In this dialog, it is
possible to select Ant target(s) and to let it(them) run. These steps create a persisted
launch configuration. The newly created configuration will appear in the launch history
under Run > External Tools and will be available in the launch configuration dialog
which is opened by clicking Run > External Tools > External Tools.... You can find
more information in the Eclipse help under “Running Ant build files”.

7.4 Running Ant as a normal Java Application
In the Eclipse help you can read detailed information about this topic under “Launching a
Java program”. In order to launch Ant, you have to configure properly your launch item.
This example has been made with the Ant launch plug in from aloba ag, which is
reachable under the URL
http://www.aloba.ch/produkte/veroeffentlichungen/antviewdebug/index.html.
First select the menu Navigate/Run… ! In the Run dialog make a new configuration item
as an Application and fill out the main class!

http://www.aloba.ch/produkte/veroeffentlichungen/antviewdebug/index.html

Hammurapi User Manual

Copyrights reserved 11
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

Figure 4
Select the (x) Arguments tab and fill the Program arguments field with the value -build
file <YOUR_PATH>\build.xml. This item should point to your build.xml file.

Figure 5
On the tab Class path you have to set the following jars:

Hammurapi User Manual

Copyrights reserved 12
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

Figure 6
These jars either belong to the Ant plug in of Eclipse, or to the Eclipse plug in
framework.
On the tab Source You have to set the following items:

• HammurapiSrc
• <JAVA_HOME>/lib/tools. jar
• <ECLIPSE_HOME>/plugins/org.apache.ant_1.5.3/ant.jar
• <ECLIPSE_HOME>/plugins/org.apache.ant_1.5.3/optional.jar
• <ECLIPSE_HOME>/plugins/org.eclipse.pde_2.1.0/ant_tasks/pde-ant.jar
• <ECLIPSE_HOME>/plugins/org.eclipse.pde.build_2.1.0/lib/pdebuild-ant.jar
• <ECLIPSE_HOME>/plugins/org.eclipse.core.resources_2.1.1/ant_tasks/resources

-ant.jar
• <ECLIPSE_HOME>/plugins/org.eclipse.ant.core_2.1.1/lib/antsupportlib.jar
• <ECLIPSE_HOME>/plugins/org.eclipse.ui.externaltools_2.1.1/lib/antrunner.jar
• <ECLIPSE_HOME>/plugins/org.eclipse.pde.core_2.1.2/pdecore.jar
• <ECLIPSE_HOME>/plugins/org.eclipse.pde_2.1.0/pde.jar
• <ECLIPSE_HOME>/plugins/org.eclipse.jdt.core_2.1.2/jdtCompilerAdapter.jar
• <ECLIPSE_HOME>/plugins/org.eclipse.pde.ui_2.1.2/pdeuiant.jar

Hammurapi User Manual

Copyrights reserved 13
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

Figure 7
One of the most important item in this list is HammurapiSrc, which points to the source
files of our Hammurapi distribution. It is important, if we want to debug our Hammurapi
Ant project. The Ant plug in of aloba ag doesn’t add this item to the Source Lookup Path
since it touches our project.
We can add this item to the source list when we uncheck “Use default source lookup
path” and click on the button “Advanced…”. You can read in the Eclipse Help under
“Creating a Java application launch configuration” about more details.
After creating this configuration it is possible to launch our Ant project with the Run, or
with the Debug item on the Toolbar of Eclipse.

8 Development process with Hammurapi
We recommend the following way to embed Hammurapi in your development process:

• There are two roles – Architect and Developers.
• Architect prepares inspector set or hierarchy of inspector sets and configures

Hammurapi to either be part of build process, in which case Hammurapi can
fail builds on high severity or low PAI, or run Hammurapi separately, say,
once a week.

• Architect also controls waivers file(s).
• For legacy codebase Architect can use “Comply-on-touch” policy (see page 28).
• Development team performs coding and then runs Hammurapi agains their code.
• Then developers analyze Hammurapi findings and either fix violations or request

waivers from Architect or request architect’s help.
• Architect review Developer’s requests and either gives waivers or suggests how

to fix violations.
• Architect may manually review most interesting pieces of code and based on

her/his findings introduce new inspectors and/or annotators.

Hammurapi User Manual

Copyrights reserved 14
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

9 Waivers
Waivers are the way to tell Hammurapi that some findings aren’t actually violations. For
example sometimes you need to have empty catch block as in the example below:
integer=defaultValue;
if (string!=null) {

try {
integer=Integer.parseInt(string);

} catch (NumberFormatException e) {
// we don’t want to do anything here

}
}
Waived violations will appear in the report as shown below:

9.1 Defining a waiver
To waive a violation for the example above you need to do the following:

1. Define ER-002 as waivable. You can do it by modifying inspectors.xml
<inspector-descriptor>
<name>ER-002</name>
<enabled>yes</enabled>
<severity>1</severity>
<inspector type="org.hammurapi.inspectors.EmptyCatchBlockRule"/>
<description>Empty catch block</description>
<waivable>yes</waivable>
<waive-case>

In some situations exception is excepted and shall be ignored.
Example:

int i=0;
if (str!=null) {

try {
i=Integer.parseInt("hello");

} catch (NumberFormatException e) {}
}

</waive-case>
…
</inspector-descriptor>
You can also add waive-case element describing situations in which this
exception can be waived. Another way to declare inspector as waivable is by
adding nested element to Hammurapi task:
<hammurapi waiverStubs="waiver_stubs.xml" title="Test cases">
<inspector name ="ER-002" waivable = "yes">
…

</hammurapi>
2. Set waiverStubs attribute in hammurapi task: waiverStubs="waiver_stubs.xml
3. Run Hammurapi. It will create waiver_stubs.xml file with entries like below.

<waiver>
<inspector-name>ER-002</inspector-name>

<signature>org/hammurapi/inspectors/testcases/violations/EmptyCatchBlockRuleViolat
ionTestCase.java:at[EmptyCatchBlockRuleViolationTestCase]:ao[getFirstByte(java.lan
g.String)]:eo[1]:es[java.io.IOException]</signature>

<reason>This exception is ignored for testing purposes.</reason>
<expiration-date>2004/05/15</expiration-date>

</waiver>
Rename or copy it to waivers.xml and leave <waiver> elements only for
violations which you are going to waive. If you want to waive all violations for a

Hammurapi User Manual

Copyrights reserved 15
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

particular inspector then delete <signature> element. If you don’t want waiver to
expire then delete <expiration-date> element. One waiver element can contain
multiple <signature> elements, but in waiver stubs every signature is placed in
individual <waiver> element.

4. Add <waivers> element to the task
<hammurapi waiverStubs="waiver_stubs.xml" title="Test cases">
<waivers file="waivers.xml"/>
<inspector name ="ER-002" waivable = "yes">
…

</hammurapi>
And run it again. Violations listed in waivers.xml will be waived.

9.2 Format of <waiver> element
<waiver> element supports the following nested elements:
• inspector-name – Inspector name.
• signature – Code signature. There can be zero, one or more signature elements. If

number of signature elements is zero then waiver applies to all inspector's reported
violations.

• include-element – package, type or operation to include. * matches anything,
package.* matches package and its subpackages. Packages are matched literally, types
are matched based on isKindOf(), including operation types as well. If operation
doesn't contain type name then any type will match., ? matches any type in operation
parameters. <init> shall be used for constructor names.

• exclude-element – package, type or operation to exclude. Same format as for include-
element.

• include-file – File name or file name pattern to include. * states for zero or more
characters. ? states for zero or one character.

• exclude-file – File name or file name pattern to exclude. Same format as for include-
file.

• reason – Reasoning behind waiving decision.
• expiration-date – Waiver expiration date. If this element is missing then waiver never

expires.

Includes/excludes are applied in the reverse definition order, by layers. This means that
definitions of operations are applied first, then definitions of types, then of files, and after
that of packages. It is a good practice not to mix different layers (package, file, type,
operation) in one waiver.
Examples of include/exclude:

Hammurapi User Manual

Copyrights reserved 16
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

• <include-element>org.hammurapi</include-element> - includes
package org.hammurapi

• <exclude-element>org.hammurapi.*</exclude-element> -
excludes package org.hammurapi and its subpackages

• <exclude-
element>org.hammurapi.InspectorDescriptor</exlude-
element> - excludes interface org.hammurapi.InspectorDescriptor and its implementations

• <include-element
>org.hammurapi.InspectorDescriptor.getMessage(java.lang
.String)</include-element> - includes method interface
org.hammurapi.InspectorDescriptor.getMessage(java.lang.String) and its implementations

• <exclude-element>toString()</exclude-element> - excludes toString() in all
classes/interfaces

• <exclude-element>org.somepackage.SomeClass.<init>(?,
java.util.List)</exclude-element> - excludes constructors which take two
parameters, the first one of any type and the second one of type java.util.List or its
implementations in org.somepackage.SomeClass and its subclasses

• <include-file>*.bpf</include-file> - includes .bpf files

9.3 Scenarios
There are several scenarios for using waivers:

• There is a conscious decision to violate some rule. Developer communicates that
decision to architect. If Architect agrees with Developer’s decision then (s)he
adds a waiver without expiration date to waivers file.

• There is an organizational policy in place, which prohibits deployment to
production environment code with Severity 1 violations. There is also code,
which contains Severity 1 violations, but due to time constraints these
violations cannot be fixed immediately. Developer requests Architect to give a
temporary waiver. Architect gives a waiver with expiration date. Developer
must fix the violation by that date.

• Architect introduces a new inspector or a set of inspectors. (S)he puts waiver(s)
with expiration date, but without signature. If waiver signature is blank that
waiver applies to all inspector findings. Developers will see waived violations
in Hammurapi reports and will have to fix them by compliance date (waiver
expiration date) set by Architect.

• Some classes/packages plays special role in your application and some inspectors
shall not apply to them.

10 Auto waivers
Autowaivers allow one inspector waive finding of another. For example if you code
complies with “ER-049 Unify logging strategy - define individual logger for class” then it violates “ER-
075 Avoid hiding inherited instance fields”. To avoid this situation ER-049 automatically waives
ER-075 by calling context.waive(element, “AvoidHidingInheritedInstanceFields”). The
first parameter is the element for which waiver is given. The second parameter is a
logical name of the inspector which finding is being waived.

Hammurapi User Manual

Copyrights reserved 17
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

To enable autowaiving you have to add <waives> element to the descriptor of the
autowaiving inspector:

<inspector-descriptor>
<name>ER-049</name>

…
<waives key="AvoidHidingInheritedInstanceFields">

<name>ER-075</name>
<reason>Logger is intended to hide superclass logger</reason>

</waives>
</inspector-descriptor>

11 Filtering
Filtering allows one inspector filter another, which means stop visit() method of inspector
being filtered from being invoked. This concept is similar to autowaiving, but
autowaiving is more precise and elaborate mechanism. Autowaived violations appear in
the report in “Waived violations” section. Filtering prevents inspector from visiting the
node being filtered and thus no violation is ever reported.
Filter – Inspector is a many-to-many relationship. One filter can filter multiple inspectors
and one inspector can be filtered by multiple filters. Filter may be associated with
inspector by name or by category.
Filtering is configured through <inspector-descriptor> element in inspectors file (see
Chapter 0) or <inspector> element in hammurapi task (see
http://www.hammurapi.org/content/doc/ant/org/hammurapi/HammurapiTask.html).
Let’s consider an example. We want to filter Cyclomatic Complexity Inspectors for
_jspService(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response). Here are the steps:
1. We implement FilteringInspector. This inspector can have regular visit() and leave()

methods but in our case it has only approve() method.
public class JspServiceFilter extends BaseInspector implements
FilteringInspector {

public boolean approve(Method method) {
try {
return !("_jspService".equals(method.getName())

&& method.getParameters().size()==2
&&

method.getEnclosingType().isKindOf("org.apache.jasper.runtime.HttpJspBas
e")

&& ((Parameter)
method.getParameters().get(0)).getTypeSpecification().isKindOf("javax.se
rvlet.http.HttpServletRequest")

&& ((Parameter)
method.getParameters().get(1)).getTypeSpecification().isKindOf("javax.se
rvlet.http.HttpServletResponse"));

} catch (JselException e) {
context.warn(method, "Filter failed: "+e.getMessage());
return true;

}
}

}

We don’t need to implement any of FilteringInspector methods because they are already
implemented by BaseInspector.
For any argument approve() method is invoked only once regardless of number of
inspectors being filtered.
2. Now filtering inspector shall be defined in inspectors.xml file:

http://www.hammurapi.org/content/doc/ant/org/hammurapi/HammurapiTask.html

Hammurapi User Manual

Copyrights reserved 18
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

<inspector-descriptor>
<name>JSP_SERVICE_FILTER</name>
<enabled>yes</enabled>
<severity>5</severity>
<inspector

type="org.hammurapi.inspectors.filters.JspServiceFilter"/>
<description>Filters inspectors inside _jspService()

method.</description>
<filter name=”ER-011”/>

</inspector-descriptor>

In our case severity is not applicable because this inspector doesn't report any
violations, we put 5 “just for the case”.
Because filters are inspectors they can have their own visit() and leave() methods,
which can actually make decision approve/disapprove and approve will just convey
this decision (see LanguageElementFilter). In such a case it is important that visit() of
filter should be invoked before visit() of inspector being filtered and leave() of filter
should be invoked after leave() of inspector being filtered. Hammurapi ensures it
automatically by ordering invocations of visit() and leave() methods. If you happen to
have a loop in filtering (inspector A filters B and B filters A and both of them have
visit() method) then exception will be thrown.

11.1 LanguageElementFilter
Hammurapi ships with built-in filter
org.hammurapi.inspectors.filters.LanguageElementFilter. Initial behavior of
the filter is to approve everything. This filter supports include, exclude, include-file, and
exclude-file parameters. Order is significant - include/exclude defined later takes
precedence over previous definitions. So including org.hammurapi.* and then excluding
org.hammurapi.inspectors.* makes sense, but not vice versa.
If package excluded all types and operations in it are excluded. If type is excluded all
operations in this type are excluded. Operation parameters can contain ?, which matches
any type.
<init> shall be used as operation name for constructors.
Parameter format:

• - matches anything

• - matches package, type or operation (if contains '(')
• - matches package and its subpackages

Packages are matched literally, types are matched based on isKindOf(), including
operation types as well. If operation doesn't contain type name then any type will match.
include-file and exclude-file parameter values are file name patterns. ? states for zero or
one character, * states for zero or more characters. See org.apache.oro.text.GlobCompiler
for more details.
Examples

<parameter name="include">org.hammurapi</parameter> - includes
package org.hammurapi
<parameter name="exclude">org.hammurapi.*</parameter> - excludes
package org.hammurapi and its subpackages

Hammurapi User Manual

Copyrights reserved 19
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

<parameter
name="exclude">org.hammurapi.InspectorDescriptor</parameter> -
excludes interface org.hammurapi.InspectorDescriptor and its implementations
<parameter
name="include">org.hammurapi.InspectorDescriptor.getMessage(java.
lang.String)</parameter> - includes method interface
org.hammurapi.InspectorDescriptor.getMessage(java.lang.String) and its
implementations
<parameter name="exclude">toString()</parameter> - excludes toString()
in all classes/interfaces
<parameter name="exclude">org.somepackage.SomeClass.<init>(?,
java.util.List)</parameter> - excludes constructors which take two
parameters, the first one of any type and the second one of type java.util.List or its
implementations in org.somepackage.SomeClass and its subclasses
<parameter name="include-file">*.bpf</parameter> - includes .bpf files.

This build file fragment shows how to filter ER-011 in _jspService() method:
<inspector name=”_jspService() filter”
className=”org.hammurapi.inspectors.filters.LanguageElementFilter”>

<filterInclude name=”ER-011”/>
<parameter name=”exclude”

value=”org.apache.jasper.runtime.HttpJspBase._jspService(javax.servlet.http.HttpServletRe
quest,javax.servlet.http.HttpServletResponse)”/>
</inspector>

12 Hammurapi Inspector Configuration
The base configuration provides 114 inspectors. If you want to change this, please
unpack the JAR file and check the file inspector.xml in package org.hammurapi.
Top level element of inspectors.xml is <inspector-set> which contains <inspector-
descriptor> elements. You can specify base inspector, which will be loaded before the
inspector set itself, set using base attribute of <inspector-set> element. base attribute
which shall contain URL of base inspector set. Using base attribute you can define
hierarchy of inspector sets. E.g. base inspector set contains common inspectors and
inspector set for web applications contains servlet-specific inspectors.
Inspector descriptor element supports the following subelements:

• fix-sample – Code snippet demonstrating how to fix violation reported by the
inspector.

• message – Message which would appear in violation. It can contain formatting
placeholders as described in java.text.MessageFormat class documentation. E.g.
“Cyclomatic complexity {0} exceeds {1}”. message element supports optional key
attribute. Using keyed messages and
org.hammurapi.InspectorContext.reportViolationEx() methods you can provide
different messages from one inspector. If message element is missing description is
used as message.

• name – Inspector name. Mandatory.
• order – Integer, use this if you want to impose order of invocation of visit()/leave()

methods. E.g. If you want InspectorA.visit(VariableDefinition) be invoked before
InspectorB.visit(VariableDefinition) and InspectorA.leave(VariableDefinition) be

Hammurapi User Manual

Copyrights reserved 20
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

invoked after InspectorB.leave(VariableDefinition) set order of InspectorA less than
order of InspectorB.leave

• rationale – Description why inspector is needed.
• category – Inspector category. E.g. “Coding standards”
• resources – List of books, articles, URL's for additional reading.
• severity – Positive number. 1 corresponds to highest severity. Severity >=5 is

considered 'advice' and is not counted in Sigma and DPMO calculations.
• Violation-sample – Code sample demonstrating code which violates standard being

checked by the inspector.
• enabled - “yes” means that inspector is “on”, any other value means that it is “off”
• waivable - “yes” means that findings of this inspector can be waived either manually

(through waivers file) or automatically (see chapter 10 “Auto waivers“ on page 16).
Waiver stubs are generated only for waivable inspectors.

• description – Description of the inspector. It appears in inspectors summary. It
differs from message because message is used to describe particular instance of
violation and can be formatted.

• inspector – defines inspector class and its configuration. See chapter 21
“Instantiation and configuration of objects with DomConfigFactory“ on page 28 for
more details.

• parameter – Inspector parameter. Inspector element supports nested parameters as
well. Parameters defined at <inspector-descriptor> level can be useful in situations
where you define <inspector> element in base inspector set and <parameter>
element(s) in derived.

• waive-case – Description in which situation(s) inspector finding can be waived.
Inspector author or architect shall provide waive-cases for reviewers and developers.

• waives – Defines which inspector this inspector can autowaive. Attribute key shall
contain inspector 'logical' name to be used in InspectorContex.waive() method. The
element itself shall contain inspector name.

• filter – Specifies which inspectors to filter. Attributes:
• name – Inspector name to filter. * matches all inspectors,
• category – Inspector category to filter. You shall specify on of the two.

• filter-exclude – Specifies which inspectors exclude from filtering. Attributes:
• name – Inspector name to filter. * matches all inspectors,
• category – Inspector category to filter. You shall specify on of the two.

Sample inspector descriptor
<inspector-descriptor>
<name>ER-000</name>
<enabled>yes</enabled>
<severity>3</severity>
<inspector type="org.hammurapi.inspectors.JavaLangImportRule"/>
<description>No need to import classes from java.lang</description>

 <violation-sample><![CDATA[import java.lang.Long;]]>
</violation-sample>
</inspector-descriptor>

The enabled-flag control the usage.

Hammurapi User Manual

Copyrights reserved 21
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

Several inspectors needs input parameter. Please do not change the parameter names, but
feel free to adapt the values. You could e.g. change the criteria for the NCSS inspector:
<parameter name="function-max-loc">50</parameter>
<parameter name="class-max-loc">500</parameter>
<parameter name="class-max-function">20</parameter>

You could use a different configuration file if you manipulate the HammurapiTask
method loadEmbeddedInspectors.
The look & feel of you reports is configured by XSL Templates. They are also part of the
package. Some XSLT contains CSS.
You can build a new JAR after your modifications or you reference your runtime to the
directory.

13 Hammurapi Testing
The Jsel Meta Model is constructed out of a ANTLR generated parse tree. Therefore,
Junit test case are hard to apply because you have to construct a AST in order to get the
Jsel objects. Testing is done with sample source code in the folder test_cases. You will
find here violations and fixes. Run Hammurapi against this folder and check the report.

14 Understanding InspectorContext
Inspectors communicate with Hammurapi runtime through
org.hammurapi.InspectorContext. If your inspector extends
org.hammurapi.BaseInspector then you can use inherited context variable. Inspector can
use the following methods of org.hammurapi.InspectorContext :

• addMetric(SourceMarker source, String name, double value) – invoke this
method to add a metric. Metric will appear in summary, package and
compilation unit reports

• annotate(Annotation) – to add Annotation (see chapter 16)
• debug(), info(), verbose() - to output logging messages
• getStorage() - returns com.pavelvlasov.persistence.CompositeStorage

which is composed of three storages: JdbcStorage with key 'jdbc',
FileStorage with key 'file' and in-memory storage with key 'memory'.
Inspector can use storage to accumulate findings to, say, build an annotation,
without holding significant amount of data in memory. Class
org.hammurapi.inspectors.sample.CollectStringLiterals

Hammurapi User Manual

Copyrights reserved 22
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

demonstrates how to use JdbcStorage, create annotations and use inspector
lifecycle methods init() and destroy()

• reportViolation() methods - to report violations
• waive() - to waive finding of another inspector (see chapter 10)
• warn() – to output warning. Warning shall be issued if inspector couldn’t

complete its task. Warnings appear on Summary page and invalidate code
quality metrics (DPMO and Sigma).

15 Writing your own Inspectors
If you check some of the inspector implementation you may feel motivated to implement
own inspector. Please follow these steps:

1. Subclass org.hammurapi.BaseInspector
2. If you want to use parameters implement the interface of

com.pavelvlasov.config.Parameterizable
3. Add a inspector-descriptor in inspector.xml. It’s recommended to use for your

development only a single inspector-descriptor.
4. Implement the inspector based on the visitor pattern. Implement visit(<type of

interest>) for every type you want to inspect. E.g. you are looking for
particular method invocation. You shall implement visit(MethodCall). Please
note that if visit method returns false or Boolean.FALSE then subsequent
inspectors will not be processed. It is a special case. So always make visit()
methods void. You can also implement leave(<type of interest>) method.
leave() methods are invoked after all visit methods for the current element and
its children have been invoked. It can be useful for collecting statistics.
Example (just an example): You want to enforce that any operation contains
not more than 50 method calls. In this case you would write the following
inspector:

public class MethodCallInspector extends BaseInspector {
private Stack operationStack=new Stack();

public void visit(Operation operation) {
operationStack.push(new int[] {0});

}

public void leave(Operation operation) {
int[] counter=(int[]) operationStack.pop();
if (counter[0]>50) {

context.reportViolation(operation);
}

}

public void visit(MethodCall methodCall) {
++((int[]) operationStack.peek())[0];

}
}
Note that we have to use stack because methods can contain local and anonymous
classes.

5. Provide test case sources in folder test_cases
6. Run a self-review

Consider the memory impact of your application. Do not (hard) reference any Jsel
objects, because the memory model want to garbage collect unused parts (Weak

Hammurapi User Manual

Copyrights reserved 23
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

Reference) and reload them when needed. If you need to keep references to repository
members you can use one of the following approaches:

• Wrap Jsel objects or collections of objects using
com.pavelvlasov.wrap.WrapperHandler.wrap(Object) method.
It will create a proxy for the object you need and there will be
no strong reference to the original object in your inspector.

• Set wrap attribute of Hammurapi task to true, or add –W to the command
line. Hammurapi will wrap the whole model so you don’t need
to invoke WrapperHandler.wrap() in your code.

• Use LanguageElement.getSignature() and keep language element
signature instead of a strong reference to the element. When
you need that element call Repository.findBySignature().

16 Writing annotations
Annotation is a means to customize Hammurapi report by adding arbitrary information.
There are two type of annotations – Linked annotations
(com.pavelvlasov.results.LinkedAnnotation) and Inline annotations
(com.pavelvlasov.results.InlineAnnotations). As names suggest the first is rendered as a
link and the second is inlined into report page.
The sample code below shows how to create a LinkedAnnotation. You can find a sample
of creating an InlineAnnotation in the source code of SimpleAnnotationSample as well.

public class SimpleAnnotationSample extends BaseInspector {

public void visit(final CompilationUnit compilationUnit) {
context.annotate(new LinkedAnnotation() {

private String path;
private String cuPath=compilationUnit.getRelativeName();

public String getName() {
return getContext().getDescriptor().getName();

}

public String getPath() {
return path;

}

public void render(final AnnotationContext context) throws HammurapiException {
final AnnotationContext.FileEntry linkEntry=context.getNextFile(".txt");

try {
Writer out=new FileWriter(linkEntry.getFile());
try {

out.write("Hello, world!!!");
} finally {

out.close();
}

} catch (IOException e) {
throw new HammurapiException("Cannot save

"+linkEntry.getFile().getAbsolutePath(), e);
}

AnnotationContext.FileEntry
fileEntry=context.getNextFile(context.getExtension());

path=fileEntry.getPath(); // This file is the entry point to the annotation.
try {

Writer out=new FileWriter(fileEntry.getFile());
try {

Hammurapi User Manual

Copyrights reserved 24
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

out.write("<HTML><BODY><H1>My simple annotation</H1>"+
"PI: "+pi+
"<P>Greeting" +
"</BODY></HTML>");

} finally {
out.close();

}
} catch (IOException e) {

throw new HammurapiException("Cannot save
"+linkEntry.getFile().getAbsolutePath(), e);

}
}

public Properties getProperties() {
return null;

}
});

}

private Double pi;

public void setParameter(String name, Object parameter) throws ConfigurationException {
if ("pi".equals(name)) {

pi=(Double) parameter;
} else {

throw new ConfigurationException("Parameter "+name+" is not supported");
}

}

public String getConfigInfo() {
return "PI="+pi;

}

}

17 How it works, tips for plugin developers
This chapter describes how HammurapiTask.execute() method works and provides
guidelines for developers who want to embed Hammurapi or write a plugin for IDE such
as Eclipse or NetBeans. Figure 8 shows main players in the Hammurapi game and their
top-level interaction.

Hammurapi User Manual

Copyrights reserved 25
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

cd Hammurapi

Searchable
Visi table

«interface»
jsel::Repository

«interface»
hammurapi::Inspector

«interface»
hammurapi::InspectorDescriptor

hammurapi::
InspectorSet

hammurapi::
InspectorContext

hammurapi::
Output

hammurapi::
ResultsCollector

results::
ResultsFactory

«interface»
render::Renderer

util::
DispatchingVisitor

«interface»
hammurapi::Listener

hammurapi::
SimpleRev iew Engine

Task
hammurapi::

HammurapiTask

logging::
AntLogger

-descriptor

-inspectorSet

-instance

-dispatcher

-task

«creates»

0..*

0..*

«creates»

«navigates»

«reports»

«dispatches to»

«uses to render»

Figure 8

17.1 HammurapiTask.execute()
This section describes how execute() method works with remarks on what needs to be
changed for embedding/plugging-in

1. An instance of com.pavelvlasov.logging.AntLogger created. AntLogger
implements com.pavelvlasov.Logger interface so in your code you either
implement this interface or use one of standard implementations from
com.pavelvlasov.logging package.

2. An instance of InspectorSet is created. InspectorSet is a collection of
InspectorDescriptor’s

3. If embeddedInspectors is set to true then embedded inspectors from
/org/hammurapi/inspectors.xml resource are loaded to the inspector set.

4. Inspector from inspector sources and inspector entries are loaded to the inspector
set. Currently there is only one useful implementation of InspectorSource –
DomInspectorSource. InspectorSourceEntry is a proxy to custom

Hammurapi User Manual

Copyrights reserved 26
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

InspectorSources. If you want to load inspectors from, say, database, provide
an implementation of org.hammurapi.InspectorSource which reads inspectors
from the database.

5. WaiverSet is instantiated.
6. Waivers are loaded to WaiverSet from WaiverSources. There is

DomWaiverSource class to read waivers from XML. If you want to load
waivers from other source you need to provide your own implementation of
WaiverSource.

7. Listeners are loaded. Listeners are the means to receive review notifications such
and must implement org.hammurapi.Listener interface.

8. Outputs are loaded. Output is just an implementation of listener which renders
results to HTML/XML. You can provide your own listener which will, say,
render results to Eclipse “Problems” window.

9. RepositioryConfig is created and configured. You need to set classloader, source
directories, …

10. Repository is created from RepositoryConfig. Currently Jsel repository doesn’t
support notion of dependency, so it is as stupid as Sun javac comparing to
Jikes. Repository need a DataSource where it saves parsed data. Currently
HypersonicTmpDataSource is used but in the future an option will be added to
specify which DataSource to use. In case of a plugin when all files are
available in compiled form as well as in source form it seems to be wise to use
HypersonicInMemoryDataSource and not to keep all project information in
the database but only for the currently analyzed file. The rest of info shall be
obtained from the classpath which shall include all compiled project files. So
the idea is that you scan one file, gather results, clean the database and go to
the next file. If you take this approach then do not add all project files to the
config at step 9, but only the file you are going to review.

11. ResultsFactory configured and instantiated. HammurapiTask.execute() uses
org.hammurap.results.persistent.jdbc.ResultsFactory to be able to store huge
amount of results. For plugin you probably don’t need it and you can use
org.hammurapi.results.simple.SimpleResultsFactory. In this case results will
remain in memory.

12. ResultsCollector is instantiated. It is a special case of inspector because it
implements OrderedTarget interface. ResultsCollector’s visit() methods are
invoked before any inspector’s visit methods and ResultCollector’s leave()
methods are invoked after any inspector’s leave() method. This allows
ResultCollector to install thread results in ResultsFactory in visit() methods
before any inspector reported anything and iterate through listeners in leave()
methods after all findings have been reported.

13. SimpleReviewEngine created. It does all the work inside the constructor.
14. Waiver stubs are written to the disk.
15. If any of inspector threw an exception during execution then BuildException is

thrown. In plugin scenario exceptions shall be output to problem view or to
the log file.

Hammurapi User Manual

Copyrights reserved 27
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

17.2 Plugin developer recommendations
Configuration information such as inspector set, waiver set, logger, listeners, results
collector and ResultsFactory can be instantiated on load time and remain in memory for
all the time while IDE runs.
Hammurapi plugin will be event driven acting on file change notifications. Jsel is not
multithreaded and embedded/in-memory Hypersonic supports only one instance. Thus
you can’t run reviews in parallel. And in most cases there is no reason to do so as
majority of developers don’t use multiprocessor machines. It is my personal opinion,
maybe I’m the only one guy with single-processor machine. Anyway there is no need in
multithreaded reviews from IDE unless you have more than 8 processors.
So you’ll need to have a background review thread and a review queue. IDE shall notify
the plugin when a particular source file was changed, saved and successfully compiled
after saving. Plugin will put the file name into the queue and notify the review thread.
Review thread shall pick the file from the queue, clean in-memory DB and perform
review by instantiating a repository with only one file in it and then a
SimpleReviewEngine.

18 Customizing reports style
Reports look and feel can be customized by parameterizing embedded XSLT stylesheets
or by replacing them with custom stylesheets or by the both means at the same time.
<output> element supports the following stylesheets:

• compilation-unit
• summary
• left-panel
• package
• inspector-set
• inspector-descriptor
• inspector-summary
• metric-details

There are two ways to replace embedded stylesheets with custom ones:

• Put custom stylesheets to classpath before pvcommons.jar and hammurapi.jar.
This is the only way available to customize stylesheets in command-line mode.

• Specify stylesheet name in name attribute of nested <stylesheet> element of
<output> element of Hammurapi Ant task.

Stylesheets can be parameterized by providing nested <parameter> element(s) to
<stylesheet> element.
<stylesheet name="summary">
<parameter name="newMarker"><img

src='http://www.hammurapi.org/new.gif' alt='NEW!'/></parameter>
</stylesheet>
The build.xml fragment above parameterizes summary stylesheet to output

icon next to modified files and packages on summary page. left-panel and package
stylesheets also support newMarker parameter. See Ant task documentation for more
details.

Hammurapi User Manual

Copyrights reserved 28
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

Stylesheet parameterization is not available in command-line mode.

19 Incremental reviews
To run incremental reviews you need to:
• Use permanent database. Use database attribute or nested server element of

Hammurapi Ant task to specify database.
• Use the same title attribute for reviews.
• Set newMarker parameter for summary, left-panel and package stylesheets to

highlight modified files (optional)
To review all files including unchanged (e.g. if you added new inspectors to inspector
set) set force attribute to true.

19.1 Comply-on-touch
Incremental reviews allow you to implement comply-on-touch policy, which can be very
useful for legacy codebases if your organizational policy prohibits deployment of code
with high severity violations to production environments and legacy code has tons of
such violations because it was written before your organization adopted automated code
review practice.
This policy means that you perform initial review of the code either of the following:

• empty inspector set,
• inspector set with a small number of inspectors,
• a single inspector which doesn't perform any review but outputs a low severity

violation saying “Legacy code, no review performed” for every file in the
repository.

• inspector set with all inspectors waived.
After that you use your standard inspector set for reviews. As only modified files will be
reviewed, only those files must comply with coding standards on production move. Thus
this policy ensures that quality of your code does improve and saves you from issuing
tons of waivers.

20 Sample code
Class org.hammurapi.inspectors.sample.CollectStringLiterals demonstrates
how to use JdbcStorage, create annotations and use inspector lifecycle methods init()
and destroy()

21 Instantiation and configuration of objects with
DomConfigFactory

This chapter repeats com.pavelvlasov.config.DomConfigFactory JavaDoc
documentation. Check
http://www.pavelvlasov.com/products/Common/doc/api/com/pavelvlasov/config/DomCo
nfigFactory.html for up-to-date information.
com.pavelvlasov.config.DomConfigFactory reates and configures objects from DOM
Element (XML file). DOM Element can be read from InputStream, File or URL.
Instantiation and configuration happens as follows:

http://www.pavelvlasov.com/products/Common/doc/api/com/pavelvlasov/config/DomConfigFactory.html
http://www.pavelvlasov.com/products/Common/doc/api/com/pavelvlasov/config/DomConfigFactory.html

Hammurapi User Manual

Copyrights reserved 29
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

Instantiation
• If there is no 'type' attribute then type defaults to String and text of the

element will be returned. E.g. <name>Pavel</name> will yield string 'Pavel'.
'type' attribute name can be changed through
DomConfigInfo.setCodeExpression(String) method. Create DomConfigInfo,
change code expression and then use DomConfigFactory(DomConfigInfo) to
instantiate DomConfigFactory.

• Otherwise class specified in 'type' attribute will be loaded and verified by
classAcceptor (if any)

• If there is no nested 'constructor'' element and element text is blank then
default constructor will be used

• If there is no nested 'constructor'' element and element text is not blank
then constructor which takes a single argument of type java.lang.String will
be used

• If there is nested 'constructor' element then 'arg' elements of
'constructor' element are iterated to create a list of arguments.
Arguments are constructed in the same way as described here. 'arg'
element also supports 'context-ref' attribute. If this attribute is set
argument value will be taken from context entry set by
setContextEntry(String, Object) method

Configuration
• If element has attribute 'url' and instantiated object (instance) is instance of

URLConfigurable then URLConfigurable.configure(URL, Map) is invoked to
configure instance

• If element has attribute 'file' and instance is instance of FileConfigurable then
FileConfigurable.configure(File, Map) is invoked to configure instance

• If instance is instance of InputStreamConfigurable then
• If element has attribute 'url' then that url is opened as InsputStream
• If element has attribute 'file' then that file is opened as InputStream
• If element has attribute 'resource' then that resource is opened as

InputStream. Instance's class is used to obtain resource which
allows to use relative resource names.

then that InputStream is passed to
InputStreamConfigurable.configure(InputStream, Map) to configure instance. If
none of aforementioned attributes is present then ConfigurationException is
thrown.

• If instance is instance of DomConfigurable then
• If element has attribute 'url' then that url is opened as InsputStream and

parsed to DOM tree
• If element has attribute 'file' then that file is opened as InputStream

and parsed to DOM tree
• If element has attribute 'resource' then that resource is opened as

InputStream and parsed to DOM tree. Instance's class is used
to obtain resource which allows to use relative resource names.

F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc

Hammurapi User Manual

Copyrights reserved 30
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

then that parsed document is passed to DomConfigurable.configure(Node, Map).
If none of the aforementioned attributes is present then element itself is passed to
DomConfigurable.configure(Node, Map)

• If instance is instance of Parameterizable then
• If there are subelements 'parameter' with attribute 'name' then

value of 'name' is used as parameter name
• Otherwise names of nested elements used as parameter names

Parameter values are evaluated in the same way as 'arg' elements for
constructors. Parameterizable.setParameter(String, Object) is invoked for each of
parameter elements. Parameterizable.setParameter(String, Object) is also invoked
for context entries with names which did not match with parameter names. E.g. if
there are two context entries 'age' and 'name' and parameter 'name' then
setParameter("name", value of parameter 'name') will be invoked and after that
setParameter("age", value of context entry 'age') will be invoked.

• If instance is instance of StringConfigurable then element text is passed to
StringConfigurable.configure(String, Map) method

• If instance is instance of Map then 'entry' subelements are iterated; 'key'
(Configurable through DomConfigInfo) and 'value' (Configurable
through DomConfigInfo) subelements are evaluated in the same way as
'arg' constructors subelements and put to instance by
Map.put(java.lang.Object, java.lang.Object)

• If instance is instance of Collection then 'element' subelements are
iterated, elements are istantiated in the same way as constructor arguments
and then placed into instance by invoking
Collection.add(java.lang.Object) method.

• If none of above conditions are met then reflection is used to set instance
fields/properties in the same way as parameters for Parameterizable are set

• If object acceptor is not null then its ObjectAcceptor.accept(Object) is invoked to
validate that object has been constructed and configured correctly

• If instance is instance of Validatable then Validatable.validate() is invoked for the
instance to validate itself.

Examples
1. <name>Pavel</name> will yield java.lang.String with value 'Pavel'
2. <age type="java.lang.Integer">33</age> will yield java.lang.Integer with

value '33'
3. <config type="org.myself.myproject.MyConfig"

url="http://myproject.myself.org/MyConfig.xml"/> will load
configuration from URL and configure MyConfig object

4. <config type="org.myself.myproject.MyParameterizableConfig">
 <parameter name="pi"
type="java.lang.Double">3.14159</parameter>
 </config>
will create MyParameterizableConfig object and then invoke its setParameter()
method if MyParameterizableConfig implements Parameterizable or invoke
setPi() method if there is such method. In lenient mode nothing will happen if
there is no setPi() method. Otherwise exception will be thrown.

5. <config type="org.myself.myproject.MyParameterizableConfig">

F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc
F:\JavaFiles\Projects\Hammurapi\doc\UserManual.doc

Hammurapi User Manual

Copyrights reserved 31
comments & bug reports appreciated: support@hammurapi.org; Johannes.Bellert@gmx.de

 <pi type="java.lang.Double">3.14159</pi>
 </config>
same as above.

	1 Introduction
	2 System requirements
	3 Concepts
	4 Installation
	4.1.1 Downloading Hammurapi distribution

	5 Running Hammurapi from command line
	5.1 Options

	6 Hammurapi in Eclipse via Main
	7 Hammurapi in Eclipse as an Ant target
	7.1 Configuring a Hammurapi Ant task
	7.1.1 The ant build.xml file
	7.1.2 Memory usage

	7.2 Basic configuration of Eclipse
	7.3 Running Ant inside Eclipse
	7.4 Running Ant as a normal Java Application

	8 Development process with Hammurapi
	9 Waivers
	9.1 Defining a waiver
	9.2 Format of <waiver> element
	9.3 Scenarios

	10 Auto waivers
	11 Filtering
	11.1 LanguageElementFilter

	12 Hammurapi Inspector Configuration
	13 Hammurapi Testing
	14 Understanding InspectorContext
	15 Writing your own Inspectors
	16 Writing annotations
	17 How it works, tips for plugin developers
	17.1 HammurapiTask.execute()
	17.2 Plugin developer recommendations

	18 Customizing reports style
	19 Incremental reviews
	19.1 Comply-on-touch

	20 Sample code
	21 Instantiation and configuration of objects with DomConfigFactory

