
SQL Compiler (for Java)
Free your Java code from SQL statements – compile them to Java classes.

Abstract
This article describes a SQL Compiler tool (SQLC), which generates Java classes from SQL
statement and table metadata. By doing so SQLC decouples Java and SQL code and enforces
clear separation of concerns between database and Java code and division of labor between

data modeler and Java developer. The article also ruminates about SQLC, O/R mapping
frameworks (taking Hibernate as an example) and plain JDBC applicability in different

contexts.

Introduction
Recently I worked on a Java application and needed to do a
lot of database interaction. I didn't want to use plain JDBC
for obvious reasons (nonetheless described below). I already
created a data model and I didn't want to do double work by
mirroring data model in Java by hand.
So I looked around for a carpal channel friendly tool,
something like erstwhile FoxPro 2.6. To my surprise I found
none. Nowadays everybody seemed to care about flexibility
but not simplicity.
After pondering for awhile I preferred creative typing over
mundane one and wrote a tool which generates interfaces
and methods from database metamodel. Lo and behold:
SQLC was born!
SQLC generates Java classes and interfaces from
information provided by
java.sql.Connection.getMetaData(),
java.sql.PreparedStatement.getMetaData() and
java.sql.PreparedStatement.getParameterMetaData()
methods. It uses BCEL and helper classes and techniques
described in XREF:ARTICLE_6207. SQLC-generated
classes use Squirrel[3] as a foundation which allows to
minimize amount of generated code.
You may think: “Oh, yet another O/R mapping tool, why
would I waste my time reading about it?” Well, SQLC is not
an O/R mapping tool at all. Like spiritualists and materialists
answer differently to the question “What is primary – spirit
or matter?”, SQLC and O/R mapping tools answer
differently to the question “What is primary – data or
objects?”. SQLC treats data being primary and being only
data – i.e. no behavior. E.g. credit card has no behavior per
se – it is just a tuple. Behavior belongs to objects operating
with credit card, not to the credit card itself.
SQLC also does something what other tools don't do – it
compiles parameterized statements to Java methods.
This is a short summary of SQLC advantages:
• Simplicity – SQLC requires very little development time

configuration and no deployment time configuration (no
deployment descriptors at runtime).

• Robustness – Build time verification of SQL statements.
SQLC uses metadata information provided by the target
database. Problems with SQL – syntax errors, invalid DB
object names – are revealed at build time.

• Reusability – compiled classes can be used by many
applications working with the same database. Generated
classes, for example, can be distributed as a jar file. In
application server environment engine classes can be

mounted to JNDI tree. Storing statements in the database
allows to reuse tuned statements in non-Java applications
as well.

• Separation of concerns and division of labor – Data
modeler models the database (DDL) and also develops
SQL statements (DML) optimal for the database. Java
developer uses generated classes/methods to
access/modify data. (S)he is not required to know SQL at
all and needs to possess only superficial understanding of
the underlying database structure.

Corollaries of the previous point are:
• Modifiability and maintainability – compiled classes

define an interface between the database and Java code.
Data modeler is free to modify DDL and DML – replace
joins with nested selects, or include execution plan to
queries – without the need of touching the Java code.

• Reduced resource demand – lower grade, and thus
cheaper, Java resources (developers) can be used. With
SQLC Java developers don't need to use JDBC API or
other tool-specific API, they use compiled methods,
which, if named properly, are self-descriptive.

• Increased productivity according to Adam Smith.
• Testability – statements can be tested independently of

Java application in SQL console. Compiled classes can
also be tested independently by, say, JUnit without the
need of complicated fixtures.

The following sections show how to use SQLC and then
compare SQLC, plain JDBC and O/R mapping (using
Hibernate[9] as an example) applicability in different
contexts.

Compilation

Illustration 1 shows a sample model, which will be used to
Illustration 1

generate classes and interfaces. We will create a simple
banking application capable to make fund transfers and
collecting service charge from accounts with low balance.
Full source code of the sample application can be
downloaded from [1].
The first step is to generate classes using sqlc Ant task:
1. <sqlc
2. script="src/com/pavelvlasov/sqlc/samples/Bank.s

ql"
3. dir="sqlc_generated"
4. docDir="sqlcDoc"
5. package="com.pavelvlasov.sqlc.samples"
6. masterEngine="BankEngine"
7. >
8. <table/>
9. </sqlc>

In the snippet above classes are generated using Bank.sql
script. In this case Hypersonic[6] in-memory database is
created, the script is executed to create database objects, and
then Java classes are generated. This approach works fine if
DDL in the script is compatible with Hypersonic. If you'd
like to generate classes straight from the target database
(preferred method) then instead of script attribute nested
<connection> element shall be specified. This is a sample
connection element for Oracle:
1. <sqlc
2. dir="sqlc_generated"
3. docDir="sqlcDoc"
4. package="com.pavelvlasov.sqlc.samples"
5. masterEngine="BankEngine"
6. >
7. <connection

8. driverClass="com.inet.ora.OraDriver"

9. url="jdbc:inetora:server:port:DB"

10. user="DBUSER"

11. password="DBPASSWORD"/>
12. <table/>
13.</sqlc>

Please note that it uses ORANXO[11] driver because drivers
provided by Oracle itself are not fully JDBC compatible (see
compatibility section below).
SQLC task shown above produces .class files in
sqlc_generated directory and HTML documentation in
sqlcDoc directory using table metadata. <table/> element
matches all tables in the database.
Now we will use the generated
com.pavelvlasov.sql.samples.BankEngine class to
perform database operations. BankEngine constructor takes
one argument of type com.pavelvlasov.sql.SQLProcessor
[3]. SQLProcessor can be created either from
java.sql.Connection or from javax.sql.DataSource. Our
banking application uses getProcessor() and getEngine()
helper method to obtain the engine:
1. private SQLProcessor processor;
2.
3. private SQLProcessor getProcessor() throws

BankException {
4. if (processor==null) {
5. ...
6. }
7. return processor;
8. }
9.

10.private BankEngine engine;
11.
12.private BankEngine getEngine() throws

BankException {
13. if (engine==null) {
14. engine=new BankEngine(getProcessor());
15. }
16. return engine;
17.}

In application server environment the engine could be bound
to JNDI tree and obtained by the application through JNDI
lookup.
We can't make (financial) transactions without creating
customers, accounts and other reference objects first. Below
is a fragment of database initialization code, which shows
how to insert records in each of database tables except
PAYMENT:
1. BankEngine engine=new BankEngine(processor);
2. engine.insertBankUser("joe", "pwd", "Joe",

"Brown");
3. ...
4. engine.insertBankRole("customer", "Bank

customer");
5. ...
6. engine.insertUserRole("joe", "customer");
7. ...
8. engine.insertAccountType("checking", "Checking

account", false);
9. ...
10.engine.insertAccount(1, new BigDecimal(1000),

"checking", "joe", true);
11....
12.engine.insertPaymentStatus("scheduled",

"Scheduled to be processed in the future");
13....
14.engine.insertPayee(1, "123-456", "KCP&L",

"Kansas", "joe");

Simple, huh? No SQL involved. Database objects
(Connection, Statement, ResultSet) lifecycle management
(open/close) is encapsulated in SQLProcessor[3].
SQLC takes column and parameter nullability into account.
If there is a column which maps to Java primitive type and it
is nullable then corresponding wrapper class is used in
generated interfaces and methods. E.g. Payment.getPayee()
returns java.lang.Integer. On the other hand, if
column/parameter is not nullable then primitive type is used.
E.g. Payment.getId() returns int.
Now let's get to the business and create a method which
transfers funds from one account to another. We want
database to do calculations of the new account balance and
thus we add two lines to sqlc task:
1. <update name="AccountCredit">UPDATE ACCOUNT SET

BALANCE=BALANCE+? WHERE ID=?</update>
2. <update name="AccountDebit">UPDATE ACCOUNT SET

BALANCE=BALANCE-? WHERE ID=?</update>

Then we run the task again. This results in two additional
methods in BankEngine: accountCredit(BigDecimal, int)
and accountDebit(BigDecimal, int). We could also store
the statements in a database table and use <dbstatements>
nested element in <sqlc> task or store them to an xml file
and use <statements> nested element.
Here is the transfer() method per se:
1. void transfer(BigDecimal amount, int debit, int

credit, String owner, Integer payee) throws
BankException, SQLException {

2. BankEngine engine=getEngine();
3. Account da=engine.getAccount(debit);
4. if (da.getBalance().compareTo(amount)<0) {
5. throw new InsufficientFundsException(
6. "There are not enough funds on

account "
7. +da.getId()
8. +". Required: "
9. +amount
10. +", available: "
11. +da.getBalance());
12. }
13. engine.accountDebit(amount, debit);
14. engine.accountCredit(amount, credit);
15. Date now=new Date(System.currentTimeMillis

());
16. engine.insertPayment(
17. getProcessor().nextPK

("PRIMARY_KEY", "PAYMENT"),
18. now,
19. amount,
20. now,
21. "Processed",
22. debit,
23. credit,
24. owner,
25. payee,
26. "processed");
27.}

Now we'll take a look at how SQLC generates methods
using index information. We need to collect service charge
for accounts with balance below some limit. So first of all
we need to iterate over such accounts. It's not a bad idea to
use an index on BALANCE column to make iteration more
effective. We'll name index IX_ACCOUNT_SQLC$M_BALANCE.
SQLC$ tells SQLC to generate methods using this index. M is
the index mode. See [2] for full list of modes. BALANCE is the
postfix for generated method. Using this information SQLC
generates getAccountBalanceLE() methods, which we'll use
in our first implementation of serviceCharge() method:
1. void serviceCharge(BigDecimal limit, BigDecimal

charge, int chargeAccount) throws
BankException, SQLException {

2. BankEngine engine=getEngine();
3. Iterator it=engine.getAccountBalanceLE

(limit).iterator();
4. while (it.hasNext()) {
5. Account account=(Account) it.next();
6. if (!account.getOwner().equals("_bank")

&& account.getId()!=chargeAccount &&
account.getBalance().compareTo(ZERO)>0) {

7. BigDecimal amount=charge.min
(account.getBalance());

8. transfer(amount, account.getId(),
chargeAccount, "_bank", null);

9. }
10. }
11.}

While the above method demonstrates usage of index-
generated method it has several flaws:
• All account types are charged in the same manner
• We had to use if-condition to avoid charging of accounts

belonging to the bank itself and accounts with no
balance.

To improve the method we'll add a query to sqlc task:
1. <query name="AccountSubjectToServiceCharge">
2. SELECT * FROM ACCOUNT WHERE BALANCE > 0
3. AND BALANCE < ? AND TYPE=?</query>

This will result in generation of
getAccountSubjectToServiceCharge() method, which will
be used for enhanced service charge collection:
1. void serviceChargeEx(String accountType,

BigDecimal limit, BigDecimal charge, int
chargeAccount) throws BankException,
SQLException {

2. BankEngine engine=getEngine();
3. Iterator

it=engine.getAccountSubjectToServiceCharge
(limit, accountType).iterator();

4. while (it.hasNext()) {
5. Account account=(Account) it.next();
6. BigDecimal amount=charge.min

(account.getBalance());
7. transfer(amount, account.getId(),

chargeAccount, "_bank", null);
8. }
9. }

And finally the main method of the application:
1. public static void main(String[] args) throws

Exception {
2. Bank bank=new Bank();
3. bank.transfer(new BigDecimal(250), 1,

1000000, "joe", new Integer(1));
4. bank.serviceCharge(new BigDecimal(500), new

BigDecimal(5), 1000001);
5. bank.serviceChargeEx("checking", new

BigDecimal(500), new BigDecimal(5), 1000001);
6. bank.serviceChargeEx("savings", new

BigDecimal(5000), new BigDecimal(15), 1000001);
7. }

The following sections summarize SQLC capabilities.

Tables
From a table SQLC generates:
• Interface with accessors and (optionally) mutators for all

table columns.
• Implementation of the interface (Java bean).
• Select methods, which return all table rows.
• Select method returning single row by primary key (if

table has primary key).
• Delete method, which deletes all rows.
• Delete method deleting a row by primary key (if table

has primary key).
• Insert method with as many parameters as there are

columns in the database.
• Insert method with one parameter of type of generated

table's interface.
• Update method with one parameter of type of generated

table's interface. The method is generated if table has
both primary key and non-primary key columns. The
method updates non-primary key columns using primary
key columns in WHERE clause.

Queries (select statements)
For each query SQLC generates:

• Interface with accessors and (optionally) mutators for all
query columns. SQLC tries to reuse/extend already
defined interfaces.

• Implementation of the interface.
• Select method, which returns database-backed collection.

The primary purpose of the database-backed collection is
to iterate over results without placing them all into
memory.

• Select method, which places query results into provided
collection.

Updates (insert, update, delete statements)
For DML statements SQLC generates one method per
statement.

Indices
For an index, which name matches generation policy
template, SQLC generates, depending of mode(s) specified:
• Select for all rows ordered by index.
• Select and delete of rows with equal index columns
• Select and delete of rows with non-equal index columns
• Select and delete of rows with positions in the index less

than specified in parameters
• Select and delete of rows with positions in the index less

or equal than specified in parameters
• Select and delete of rows with positions in the index

greater than specified in parameters
• Select and delete of rows with positions in the index

greater or equal than specified in parameters.
The reason behind generating methods from indices is that
the generated method uses the index to do the operation.
This is a mechanism of securing the application from long-
running queries running on unindexed columns.

Automatic interface inheritance
SQLC automatically builds hierarchy of generated
interfaces. E.g. AccountType interface extends
PaymentStatus interface because both of them have
getDescription() and getName() methods. It may seem
insane at first time but don't forget – the interfaces just
represent data and do not bear any other semantics.
Inheritance is convenient for writing generic data-processing
algorithms.
It is also possible to hint SQLC to reuse existing interfaces
or to generate interfaces, which extend existing interfaces. It
is done by adding <interface> element to <sqlc> task.
One more feature in interface generation is generation of
“common denominator” interfaces. Common denominator
interface is generated if there are two or more interfaces,
which start with the same word(s) and have common
methods. E.g. if there are two queries which generate two
interfaces - PersonUsa and PersonRussia:
1. public interface PersonUsa {
2. int getId();
3. String getLastName();
4. String getFirstName();

5. String getSsn();
6. }

7.
8. public interface PersonRussia {
9. int getId();
10. String getLastName();
11. String getFirstName();
12. String getPassportNo();
13.}

SQLC will find that
1. Both queries names start with word 'Person'. Word is

defined as a sequence of characters starting with capital
letter.

2. Queries have common columns.
And it will generate inerface Person. PersonUsa and
PersonRussia will extend interface Person:
1. public interface Person {
2. int getId();
3. String getLastName();
4. String getFirstName();
5. }
6.
7. public interface PersonUsa extends Person {
8. String getSsn();
9. }
10.
11.public interface PersonRussia extends Person{
12. String getPassportNo();
13.}

Dealing with big databases
If you have a database with hundreds of tables it is not a
good idea to generate classes for all of them in one package
and one engine. You should compartmentalize you schema
into manageable subject areas and generate classes for each
area into a different package.
Instead of <table/> element you will need to explicitly
provide catalog, schema and table names. For example, to
generate classes for all tables in the BANK schema you'll need
to add <table schema=”BANK”/> to sqlc task.

Database standards and generation policy
SQLC uses names of database objects to generate Java
classes and methods. With this database standards gain clear
purpose – table and field names shall comply with
organization's naming conventions not just because pesky
DBA's want to show their power, but because it is needed to
generate intuitive and comprehensible Java API from the
database.
Different organizations have different DB standards. And
standard isn't something that can be easily changed. E.g.
according to DB standards of the organization where I'm
working field BALANCE in ACCOUNT table shall have name
ACCOUNT_BALANCE_NBR.
That's OK, but I don't want to have Java property
AccountBalanceNbr, as it would be generated by SQLC by
default. I want it to be Balance. The solution is to provide
custome implementation of

com.pavelvlasov.sql.metadata.GenerationPolicy. The
easiest way to do so is to subclass
com.pavelvlasov.sql.metadata.DefaultGenerationPoli
cy. To solve the aforementioned problem
generateColumnName() method shall be overridden.

Transactions
SQLC doesn't mess with transaction management.
Transactions are attributes of invocation context. E.g. in EJB
when you obtain a datasource and then a connection inside a
method, which has transactional attribute set, that connection
shall already be properly enrolled into a transaction.

SQL execution metrics
One more buy-in for SQLC, dear reader. Compiled classes
use com.pavelvlasov.sql.SQLProcessor class for all
database requests. SQLProcessor class can gather JDBC
statistics for you – SQL statement that was executed, how
many times, min, max, average and total execution time. To
turn on this functionality JVM-wide you need to set
com.pavelvlasov.sql.SQLProcessor:sharedMetricConsu
mer system property to the class name of an implementation
of com.pavelvlasov.metrics.MetricConsumer. There is
one readily available –
com.pavelvlasov.metrics.DumpingXmlOnShutdownMetric
Consumer. The class name is self-descriptive. This metric
consumer collects metrics and then dumps them in XML
format to file on JVM shutdown. Default file name is sql-
metrics.xml. It can be changed by setting
com.pavelvlasov.metrics.DumpingXmlOnShutdownMetric
Consumer:output system property.
Command-line switch sample:
1. -Dcom.

pavelvlasov.sql.SQLProcessor:sharedMetricConsum
er=com.pavelvlasov.metrics.DumpingXmlOnShutdown
MetricConsumer

You can provide your own implementation of
MetricConsumer, which, for example, would save statistics
to the same database or send to some agent over network.
This would obviate bringing the JVM down to obtain
statistics. Another option (in server environment) is to have
a web page which would display SQL execution statistics.
Metric can also be set only for particular SQLProcessor. In
JBoss you can expose SQLProcessor as Mbean and turn
metrics gathering on and off without bouncing the server.

Database and JDK compatibility
SQLC requires JDK 1.4 and compatible JDBC drivers.
Drivers shall implement Connection.getMetaData(),
PreparedStatement.getMetaData() and
PreparedStatement.getParameterMetaData().
This is a list of databases, which I tested for SQLC
compatibility.
Compatible:
• Oracle 9.2 with ORANXO[11] driver
• Hypersonic 1.7.2
• Firebird 5.1
• Cloudscape 10

Incompatible:
• MySql 4.2 – According to MySQL JDBC driver

documentation, there is no such paradigm as statement
parameter in MySQL engine. So parameterized
statements are 'emulated' and implementation of
getParameterMetadata() would require having parser
embedded in MySQL JDBC driver.

• Oracle 9.2 with Oracle's drivers – Oracle's drivers throw
exception with the message “Unsupported feature” on
invocation of getParameterMetadata() method.

• Sun ODBC-JDBC bridge from JDK 1.4 (tested with
Oracle 9.2)

Please note that incompatibility doesn't mean that you can't
take advantage of SQLC when you use one of incompatible
databases. If your statements and database DDL is
compatible with Hypersonic you can use script element or
attribute of sqlc task to have Hypersonic provide needed
metadata information and then use compiled classes with
your target database. I did so with Oracle – it worked just
fine.
Compiled classes do not use any JDK-1.4 features and shall
be 1.3.x compatible, but I didn't test them on Java 1.3.

Hibernate or Incarnate
This is a philosophical section which ruminates what is
primary – data or Java objects? If data is primary then
hibernating Java objects is wrong – what we should do is
incarnation of data in a convenient way in Java. SQLC does
just that.
So what's the answer? The answer is that there is no singular
answer, it all depends on a situation. If you have already
existing Java classes which you need to store to relational
database and amount of data you need to store isn't too big
then O/R mapping does its work very well.
If amount of data is huge then it would, most probably,
require special attention to database modeling and thus data
becomes primary.
Data also is primary in RUP-like development process.
Illustration 6 elucidates the point. The process is goes in the
direction of lowering of level of abstraction. In other words,
each step adds more details.
The process starts with identifying requirements. After that
Use Case and Business Object Domain (BDOM) models are
produced. Use Case model represents system behavior,
BDOM represents system data - subject area entities and
their relationships. BDOM objects have attributes but don't
have operations. So, in fact, BDOM is a logical model of a
database from which a physical model is produced by adding
a few details - attributes' types and constraints.
Java class model, on the other hand is a convergence of Use
Case model and BDOM. It requires addition of much more
details and thus is of lower level of abstraction than database
model. The fact that RDMS semantics can be expressed in
Java language (pure Java databases like Hypersonic is an
example), but not vice versa is another justification of Java
having lower level of abstraction than SQL.
Therefore, producing database schema from Java classes is
conceptually wrong because it violates the principle of

lowering of level of abstraction.
Handcrafting Java classes from database model is also a bad
idea. Just duplicating database semantics
is a waste of time, as it can be done
automatically. Mixing business
semantics with persistence semantics is
even worse.
This is where SQLC idea comes from –
database shall be developed first. Then
bridge classes shall be generated by
SQLC and only after that database-
dealing Java classes shall be developed.
You may say – wait a minute, when
SQLC-generated classes incarnate data
they produce objects, so SQLC is
essentially an O/R mapping tool! No, it
is not a mapping tool, it is a bridge
generating tool. Mapping assumes that
for each table and column table name
shall be mapped to a name of already
existing class and column name shall be
mapped to Java property or field of that class. Typically
such a mapping is done in xml files. Another point is that
SQLC is not an O/R mapping tool is that object is
data+behavior. Objects produced by SQLC-generated
classes and representing rows
do not have behavior – just
data accessors/mutators. Thus
they are essentially data
structures.
After reading this section one
of reviewers remarked: “Who
believes in RUP?” I think some
people do, but this is not the
point. The point is that if your
application has just a dozen of
business-domain objects and
your developers are capable to
envisage and code them right
off the bat in Java then O/R
mapping path is the right one.
But if, by whatever reason, you
tend to create database model
first then SQLC is probably is
a better option.

Applicability comparison
By now you got an idea what SQLC is and what it does. As
was already mentioned above, SQLC is not an O/R mapping
tool. It does not hibernate Java objects to relational
database, it incarnates database objects in Java. As such it
cannot be compared with, say Hibernate, as M-16 cannot be
compared with Hatori Hanzo sword. Both of them use the
same basic principle, serve the same purpose, but do it in
different ways. What can be compared is their applicability
depending on context and person wielding the tool.
Illustrations 2-5 show usage scenarios for JDBC, SQLC and
Hibernate. Color codes:
• Red - Java concern.

• Blue - Database concern.
• Yellow – build concern.

• Navy – Database and HQL concerns.

JDBC
Services offered by JDBC are too low-
level. Working with database through
plain JDBC is like writing XML file
using OutputStream – it is possible but
such a solution is poorly maintainable
and error-prone.
With plain JDBC developer can mistype
table or column name, forget to close
JDBC resources, issue queries which will
run for hours because proper index
wasn't created and do a lot of other scary
stuff.
Usage of plain JDBC also implies
developer's knowledge of SQL and leads
to a mix of Java and SQL.

JDBC is the most flexible, all other tools are built on it, but
at the same time working with plain JDBC is the most code-
intensive approach.

Hibernate
Hibernate, no doubt, is a great
O/R mapping tool. It also has
many features which SQLC
doesn't address, for example,
caching and relationship
navigations. Whether to prefer it
over SQLC depends on whether
your developers are already
familiar with Hibernate.
If they are not or if you are going
to outsource development then
Hibernate can be costly.
Hibernate itself is open source
and doesn't cost a groat, but
Hibernate reference manual is
140 pages and Hibernate book is
400 pages. Effectiveness with
Hibernate requires knowledge of
other tools like Xdoclet and

Middlegen.
In case of in-house developers cost will be in form of low
productivity and high level of rework during learning period.
In case of outsourcing cost will be in form of higher rate of
Hibernate-proficient contractors.
Also note that part of the cost maybe for nothing. For
example, specifics of your application may make Hibernate
cache not only useless, but dangerous.
Caching works fine if your application is the only one
modifying the database. In such a situation roundtrip to the
database is required only on data modification
(insert/update/delete). This scenario corresponds to commit
option A for EJB's.

Illustration 2 Separation of
concerns in plain JDBC
programming

Illustration 3 Absence of separation of concerns in
Hibernate.

If there is more than one process updating the database at the
same time then
the only
advantage of
caching is
reuse of
instances
(commit option
B in EJB).
But in critical
applications
reuse of
instances
maybe not
acceptable to
avoid any
chance of
manipulating
with stale data
(commit option
C in EJB). This
is where
caching must
not be used at
all.
Transparent relationships management is also is not as good
as it may appear. Misunderstanding of the concept can leas
to a mess. Trust me, I've seen it.
According to [10] “roughly 80% of a typical software
system cost occurs after initial deployment”. Development
team is typically gone shortly after initial deployment. Thus

skillset
requirements
apply also to
maintainers.

iBatis SQL
Maps
This is another
Java-DB tool.
iBatis doesn't
generate Java
classes and
methods. It
maps database
to existing Java
classes. So this
tool is more
about
flexibility
through
indirection
(mapping).
Developer
needs to
handcraft Java

classes and XML maps. iBatis Java API takes map name as
a parameter. Problems like typo in the map name or in the
map's SQL or SQL being out of sync with the database
cannot be revealed at build time, only at runtime.

SQLC

SQLC is best applicable in environments where
• Databases are created in accordance with database

naming standards, which allows to generate self-
descriptive names for Java methods and interfaces.

• Database objects are created before Java code dealing
with them is written.

• DBA's and data modelers are more permanent than
developers.

• Development teams are volatile – one team works on
Phase one, another on Phase two and yet other provides
support.

• Gartner says only 32% of the 2.5 million Java developers
in the world have genuine knowledge, which means there
is a serious lack of high-level development skills. SQLC
is beneficial for organizations employing not only
“smart 1/3” but also those who do not possess “genuine
Java knowledge”.

• Java application being developed is not required to run
on a dozen of different RDBMS with different table and
column names. In other words, configurability is not the
key factor. It is possible to generate compatible Java
classes from different databases, though.

SQLC doesn't cover all data-access scenarios and there will
be times when you'll need to fall back to Squirrel[3] or plain
JDBC.

Conclusion
Probably the best way to find out whether SQLC is right for
you is to give it a try. After that you'll make your choice – to
use O/R mapping tools, plain JDBC, SQLC or a mix of
them.

Resources
 1 Sample code for this article

http://www.pavelvlasov.com/articles/sqlc/sqlc-
samples.zip

 2 SQLC: Manual –
http://www.pavelvlasov.com/pv/content/Articles/sqlc/sql
c.html; Download -
http://www.pavelvlasov.com/products/Common/pvcomm
ons-2.8.0.zip

 3 Squirrel
(http://www.pavelvlasov.com/pv/content/Articles/articles
.sql.html,
http://www.pavelvlasov.com/products/Common/pvcomm
ons-2.8.0.zip) - classes simplifying common database
operations and encapsulating JDBC resource
management patterns.

 4 Antlr (http:// www.antlr.org) – Parser generator. Used by
code generation classes.

 5 BCEL (http://jakarta.apache.org/bcel/) - Bytecode
generation library.

 6 Hypersonic (http://sourceforge.net/projects/hsqldb/) -
100% Java SQL database.

Illustration 4Separation of concerns in
SQLC with statements kept in build file.

Illustration 5Separation of concerns in
SQLC with statements kept in database
itself

 7 Ant (http://ant.apache.org/) - Java based build tool.
 8 Azzurri Clay

(http://www.azzurri.jp/en/software/clay/index.jsp) –
Database modeling plugin for Eclipse.

 9 Hibernate (http://www.hibernate.org) – most popular
Java O/R mapping framework.

 10 Software Architecture in practice. Len Bass, Paul
Clemens, Rick Kazman. ISBN 0-321-15495-9

 11 ORANXO
(http://www.inetsoftware.de/English/Produkte/ORANXO
/default_main.htm) – Fully JDBC compatible fast driver
for Oracle.

 12 iBatis SQL Maps
(http://www.ibatis.com/common/sqlmaps.html) – Java –
DB mapper.

Illustration 6Development from requirements to deployed application

